Time-period Measurements of Reversible Pendulum Using Arduino
Abstract
Purpose of the study: The purpose of this study is to improve the Kater’s reversible pendulum experiment by integrating an Arduino microcontroller and infrared sensor to obtain more accurate, reliable, and automated measurements of oscillation periods for determining the acceleration due to gravity.
Methodology: The methodology used in this study includes Kater’s reversible pendulum, Arduino Uno microcontroller (Arduino, Italy), infrared (IR) sensor, digital stopwatch (Casio HS-3V-1R), personal computer with Arduino IDE software, data recording using Microsoft Excel, and review of related literature and student feedback survey.
Main Findings: The main findings of this study show that the modified Kater’s reversible pendulum integrated with Arduino Uno and an infrared sensor successfully automated oscillation measurements, minimized human error, and improved timing accuracy. The system produced a reliable value of gravitational acceleration, g = 9.85 m/s², confirming high precision and effectiveness of the experimental setup.
Novelty/Originality of this study: The novelty of this study lies in modifying the traditional Kater’s reversible pendulum by integrating an Arduino Uno and infrared sensor for automated oscillation measurement. This innovation advances existing methods by reducing human error, improving precision, and providing students with exposure to modern microcontroller applications, thereby enhancing both experimental accuracy and educational value.
References
R. J. Howarth, “Gravity surveying and the ‘Figure of the Earth’ from Newton to CHAMP,” Geol. Soc. London, Memoirs, vol. 60, pp. 165–226, 2024, doi: 10.1144/M60-2022-30.
J. Weisbach, Mechanics of Engineering. Theoretical Mechanics, with an Introduction to the Calculus. (n.p.): Outlook Verlag, 2024.
Š. Kubínová and J. Šlégr, “Physics demonstrations with the Arduino board,” Phys. Educ., vol. 50, no. 4, pp. 472–474, 2015, doi: 10.1088/0031-9120/50/4/472.
H. Kater, “An account of experiments for determining the length of the pendulum vibrating seconds in the latitude of London,” Phil. Trans. R. Soc. Lond., vol. 104, no. 33, p. 109, 1818.
B. L. Worsnop and H. T. Flint, Advanced Practical Physics. Delhi, India: Khosla Publishing House, 2021.
R. D. Peters, “Student-friendly precision pendulum,” Phys. Teach., vol. 37, p. 390, 1999, doi: 10.1119/1.880328.
D. Candela, K. M. Martini, R. V. Krotkov, and K. H. Langley, “Bessel’s improved Kater pendulum in the teaching lab,” Am. J. Phys., vol. 69, p. 714, 2001, doi: 10.1119/1.1349544.
A. Çoban and N. Çoban, “Validation of Newton’s second law using Arduino: STEM teaching material,” Phys. Educ., vol. 56, no. 1, p. 013004, 2021, doi: 10.1088/1361-6552/abc639.
N. S. A. Pereira, “Measuring the RC time constant with Arduino,” Phys. Educ., vol. 51, no. 1, p. 019501, 2016, doi: 10.1088/1361-6552/52/1/019501.
P. R. Espindola, C. R. Cena, D. C. B. Alves, D. F. Bozano, and A. M. B. Goncalves, “Impulse measurement using an Arduino,” Phys. Educ., vol. 53, p. 035005, 2018, doi: 10.1088/1361-6552/aaa920.
V. Oliveira, “Using a reed switch to measure the angular speed of a fidget spinner,” Phys. Educ., vol. 55, p. 023007, 2020, doi: 10.1088/1361-6552/ab694f.
B. Chiriacescu, F. Chiriacescu, C. Miron, C. Berlic, and V. Barna, “Arduino and Tracker video - didactic tools for study of the Kater pendulum physical experiment,” Rom. Rep. Phys., vol. 72, no. 1, pp. 1–14, 2020.
Y. Yanti, N. N. Mulyaningsih, and D. L. Saraswati, “Pengaruh panjang tali, massa dan diameter bandul terhadap periode dengan variasi sudut,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 5, no. 1, p. 6, 2020, doi: 10.30998/string.v5i1.5885.
A. Fauzi, P. Marwoto, and S. E. Nugroho, “A complete Arduino-based mathematical pendulum experiment tool with real-time data acquisition using an Excel spreadsheet,” JIPF (J. Ilmu Pendidik. Fis.), vol. 9, no. 2, p. 211, Jul. 2024, doi: 10.26737/jipf.v9i2.5073.
A. Sudarmanto, J. B. Poernomo, and A. R. Maulana, “The IoT-based mathematical pendulum real laboratory tool,” Geophys. Instrum. Theor. Phys.-Fiziya, vol. 6, no. 2, pp. 92–103, 2024, doi: 10.15408/fiziya.v6i2.37445.
R. F. Adiati, A. S. Haniyah, A. Kartono, and H. Syafutra, “Design of an automatic pendulum velocity measuring device using light sensors,” Indones. Phys. Rev., vol. 8, no. 1, pp. 150–161, 2025, doi: 10.29303/ipr.v8i1.404.
A. O. Allen, “On the adjustment of Kater’s pendulum,” Math. Gazette, vol. 3, no. 57, pp. 307–313, 1906, doi: 10.2307/3604984.
H. B. Pedersen et al., “An experimental system for studying the plane pendulum in physics laboratory teaching,” Eur. J. Phys., vol. 41, p. 015701, 2020, doi: 10.1088/1361-6404/ab4b29.
J. C. Shedd and J. A. W. N. Birchby, “A study of the reversible pendulum. Part II. Experimental verifications,” Phys. Rev. (Series I), vol. 34, p. 110, Feb. 1912, doi: 10.1103/PhysRevSeriesI.34.110.
P. F. Hinrichsen, “Analyzing compound pendulum data,” Eur. J. Phys., vol. 43, p. 065003, 2022, doi: 10.1088/1361-6404/ac93c3.
R. K. Shukla and A. Srivastava, Practical Physics, 1st ed. New Delhi, India: New Age Int. Publishers, n.d.
G. L. Baker and J. A. Blackburn, The Pendulum. Oxford, U.K.: Oxford Univ. Press, 2005.
A. Stinner, C. F. Gauld, and M. Matthews, The Pendulum: Scientific, Historical, Philosophical, and Educational Perspectives. Heidelberg, Germany: Physica-Verlag, 2005.
L. P. Pook, Understanding Pendulums: A Brief Introduction. Dordrecht, Netherlands: Springer, 2011.
P. Zotto et al., General Physics: Mechanics Thermodynamics. Bologna, Italy: Società Editrice Esculapio, 2022.
E. Mulyadi, A. Asrizal, H. Amir, and M. B. Sari, “Design and construction of a mathematical pendulum harmonic motion experiment system using Arduino based E18-D80Nk proximity sensor,” J. Experimental and Applied Physics, vol. 2, no. 3, 2024, doi: 10.24036/jeap.v2i3.68.
A. Bachtiar and I. R. Ermawati, “Development of electromagnetic-based physical pendulum practical tools using infrared sensors,” J. Penelitian dan Pembelajaran Fisika, vol. 16, no. 2, 2025, doi: 10.26877/jp2f.v16i2.1742.
A. Bachtiar and I. R. Ermawati, “Effectiveness of using electromagnetic-based physical pendulum practical tools using infrared sensors in Basic Physics Practical 1,” Int. J. Soc. Sci. Humanit. Res., vol. 8, no. 7, pp. 72–79, Jul. 2025, doi: 10.47191/ijsshr/v8-i7-11.
A. Fauzi, P. Marwoto, and S. E. Nugroho, “A complete Arduino-based mathematical pendulum experiment tool with real-time data acquisition using an Excel spreadsheet,” JIPF (J. Ilmu Pendidik. Fis.), vol. 9, no. 2, p. 211, Jul. 2024, doi: 10.26737/jipf.v9i2.5073.
M. de Souza, J. G. Maia, and L. N. de Andrade, “Pendulum Tracker – SimuFísica: A web-based tool for real-time measurement of oscillatory motion,” arXiv preprint arXiv:2506.07301, Jun. 2025.
Copyright (c) 2025 Adya Wadhwa, Manhohan Singh, Kuldeep Kumar, Ajay Wadhwa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and acknowledge that the Schrödinger: Journal of Physics Education is the first publisher licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.