Cooling Media–Driven Shift in Dominant Machining Mechanisms: A Taguchi-Based Optimization of Surface Roughness in CNC Milling of S45C Steel

Keywords: S45C, CNC Milling, Cooling Media, Dromus, Radiator Water, Surface Roughness, Taguchi Method

Abstract

Purpose of the study: Is to optimize the surface roughness in CNC milling of S45C steel using two types of cooling media: Dromus and radiator water.

Methodology: This study employed the Taguchi experimental design method to compare cooling media. Three main machining parameters, namely spindle speed, depth of cut, and feed rate, were examined at three levels using a Taguchi L9 orthogonal array. In addition, two different cooling media, namely radiator water and Dromus, were applied to investigate their effects on surface integrity. Surface roughness values ​​were measured using a standard surface roughness tester and analyzed using the Signal-to-Noise (S/N) ratio, with the results supported by Analysis of Variance (ANOVA).

Main Findings: The results demonstrate that cooling media play a decisive role not only in reducing surface roughness but also in shifting the dominant machining parameter. Under radiator water cooling, spindle speed was the most influential factor, contributing 45.67% to surface roughness variation. In contrast, when Dromus was applied, depth of cut became the dominant parameter with a contribution of 63.40%. Dromus consistently produced lower surface roughness values and higher S/N ratios, indicating improved thermal control and process stability. The optimal machining condition was identified at a spindle speed of 1910 rpm, a depth of cut of 0.2 mm, and a feed rate of 330 mm/min.

Novelty/Originality of this study: The novelty of this study lies in revealing how cooling media fundamentally alter surface formation mechanisms and parameter dominance, offering new insights for adaptive and efficient CNC milling optimization strategies.

Author Biographies

Fatullah Faing, Politeknik Manufaktur Negeri Bangka Belitung

Department of Mechanical Engineering and Manufacturing, Politeknik Manufaktur Negeri Bangka Belitung, Kepulauan Bangka Belitung, Indonesia

Eko Yudo, Politeknik Manufaktur Negeri Bangka Belitung

Department of Mechanical Engineering and Manufacturing, Politeknik Manufaktur Negeri Bangka Belitung, Kepulauan Bangka Belitung, Indonesia

Zaldy Kurniawan, Politeknik Manufaktur Negeri Bangka Belitung

Department of Mechanical Engineering and Manufacturing, Politeknik Manufaktur Negeri Bangka Belitung, Kepulauan Bangka Belitung, Indonesia

References

[1] M. Achouch, M. Dimitrova, K. Ziane, S. S. Karganroudi, R. Dhouib, H. Ibrahim, and M. Adda, “On predictive maintenance in industry 4.0: Overview, models, and challenges,” Applied sciences, vol. 12, no. 16, pp. 8081, 2022, doi: 10.3390/app12168081.
[2] X. Wen, J, Liu, C. Du, P. Qu, S. Sheng, X. H. Liu, C. Zhou, Y. Kang, Y. Chen, and L. Dong, “The key technologies of machining process design: a review,” The International Journal of Advanced Manufacturing Technology, vol. 120, no. 5, pp. 2903-2921, 2022, doi: 10.1007/s00170-022-08982-y.
[3] M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, “Exploring impact and features of machine vision for progressive industry 4.0 culture,” Sensors international, vol. 3, pp. 100132, 2022, doi: 10.1016/j.sintl.2021.100132.
[4] S. Kumar, T. Gopi, N. Harikeerthana, M. K. Gupta, V. Gaur, G. M. Krolczyk, and C. Wu, “Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control,” Journal of Intelligent Manufacturing, vol. 34, no. 1, pp. 21-55, 2023, doi: 10.1007/S10845-022-02029-5.
[5] G. Prashar, H. Vasudev, and D. Bhuddhi, “Additive manufacturing: expanding 3D printing horizon in industry 4.0,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 17, no. 5, pp. 2221-2235, 2023, doi: 10.1007/S12008-022-00956-4.
[6] D. Powell, M. C. Magnanini, M. Colledani, and O. Myklebust, “Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions,” Computers in Industry, vol. 136, pp. 103596, 2022, doi: 10.1016/j.compind.2021.103596.
[7] T. Batu, H. G. Lemu, and H. Shimels, “Application of artificial intelligence for surface roughness prediction of additively manufactured components,” Materials, vol. 16, no. 18, pp. 6266, 2023, doi: 10.3390/ma16186266.
[8] A. W. Hashmi, H. S. Mali, A. Meena, M. F. Hashmi, and N. D. Bokde, “Surface characteristics measurement using computer vision: A review,” CMES-Computer Modeling in Engineering & Sciences, vol. 135, no. 2, 2023, doi: 10.32604/cmes.2023.021223.
[9] S. Ghosh, R. Knoblauch, M. El Mansori, and C. Corleto, “Towards AI driven surface roughness evaluation in manufacturing: A prospective study,” Journal of Intelligent Manufacturing, vol. 36, no. 7, pp. 4519-4548, 2025, doi: 10.1007/s10845-024-02493-1.
[10] G. Li, S. Du, B. Wang, J. Lv, and Y. Deng, “High definition metrology-based quality improvement of surface texture in face milling of workpieces with discontinuous surfaces,” Journal of Manufacturing Science and Engineering, vol. 144, no. 3, pp. 031001, 2022, doi: .
[11] L. Bruckmeier, A. Ringel, U. Vroomen, D. Bailly, and A. Bührig-Polaczek, “Influence of high-pressure die casting process parameters on the compound strength of hybrid components with undercut sheet metal,” Metals, vol. 13, no. 10, pp. 1717, 2023, doi: 10.3390/met13101717.
[12] H. Blala, C. Pengzhi, Z. Shenglun, C. Gang, R. Shangwen, and M. Zhang, “Innovative hybrid high-pressure die-casting process for load-bearing body-in-white structural components,” International Journal of Metalcasting, vol. 18, no. 4, pp. 3460-3481, 2024, doi: 10.1007/s40962-024-01280-1.
[13] Y. Wang, S. Wang, and S. Ba, “Research on the influence of press-loading process on the quality of arc-shaped charges in warheads,” Granular Matter, vol. 27, no. 3, pp. 70, 2025, doi: 10.1007/s10035-025-01540-9.
[14] S. Jia, A. Liu, K. Kang, and W. Yang, “Study on optimization of high-pressure casting process and improvement of mechanical properties for damping spacer based on ABAQUS,” Materials, vol. 18, no. 18, pp. 4378, 2025, doi: 10.3390/ma18184378.
[15] R. V. Rao, and J. P. Davim, “Optimization of different metal casting processes using three simple and efficient advanced algorithms,” Metals, vol. 15, no. 9, pp. 1057, 2025, doi: 10.3390/met15091057.
[16] S. Napid, M. R. Harahap, and A. H. Nasution, “Effect of cutting parameters on surface roughness in dry machining of s45c steel using carbide tools,” International Journal of Research and Review (IJRR), vol. 9, no. 12, pp. 669-677, 2022, doi: 10.52403/ijrr.20221277.
[17] J. A. Ghani, M. A. Ismanizan, H. A., Rahman, C. H. Che Haron, A. Z. Juri, M. S. Kasim, and M. Rizal, “Machining analysis of S45C carbon steel using finite element method. J. Tribol., 40, 226-246, 2024.
[18] P. Son Minh, V. T. Nguyen, T. T. Nguyen, and N. Ho, “Investigation of surface hardness and microstructural changes in s45c carbon steel cylinders through arc quenching,” Metals, vol. 14, no. 12, pp. 1438, 2024, doi: 10.3390/met14121438.
[19] V. T. Nguyen, D. T. T. Phan, H. D. S. Toan, T. T. Son, P. S. Minh, and N. Ho, “Impact of arc quenching parameters on surface hardness and microstructure of S45C steel with concave surfaces,” PLoS One, vol. 20, no. 6, pp. 0324922, 2025, doi: 10.1371/journal.pone.0324922.
[20] Y. Cho, M. J. Baek, H. Choi, H. Park, M. Y. Seok, Y. N. Kwon, and D. J. Lee, “Effect of Surface Treatment Process on the Residual Stress Distribution in S45C Butt-Welded Joints,” International Journal of Automotive Technology, vol. 26, no. 5, pp. 1219-1229, 2025, doi: 10.1007/s12239-025-00309-6.
[21] A. Ullah, T. C. Chan, and S. L. Chang, “Current trends in vibration control and computational optimization for CNC machine tools: a comprehensive review,” The International Journal of Advanced Manufacturing Technology, vol. 139, no. 11, pp. 5409-5444, 2025, doi: 10.1007/s00170-025-16238-8.
[22] X. He, K. Zhang, R. Li, W. Tang, and Y. Peng, “Priority analysis and optimization for accuracy allocation of precision grinding machine considering manufacturing accuracy and cost,” International Journal of Precision Engineering and Manufacturing, vol. 26, no. 3, pp. 599-612, 2025, doi: 10.1007/s12541-024-01117-1.
[23] L. K. Wei, S. Z. Abd Rahim, M. M. Al Bakri Abdullah, A. T. M. Yin, M. F. Ghazali, M. F. Omar, and A. E. H. Abdellah, “Producing metal powder from machining chips using ball milling process: A review,” Materials, vol. 16, no. 13, pp. 4635, 2023, doi: 10.3390/ma16134635.
[24] A. A. Krimpenis, and D. M. Iordanidis, “Design and analysis of a desktop multi-axis hybrid milling-filament extrusion CNC machine tool for non-metallic materials,” Machines, vol. 11, no. 6, pp. 637, 2023, doi: 10.3390/machines11060637.
[25] T. C. Chan, J. D. Li, U. Farooq, and A. Ullah, “Improving machining accuracy of complex precision turning-milling machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 131, no. 1, pp. 211-227, 2024, doi: 10.1007/s00170-024-13088-8.
[26] R. Binali, A. D. Patange, M. Kuntoğlu, T. Mikolajczyk, and E. Salur, “Energy saving by parametric optimization and advanced lubri-cooling techniques in the machining of composites and superalloys: A systematic review,” Energies, vol. 15, no. 21, pp. 8313, 2022, doi: 10.3390/en15218313.
[27] G. W. A. Kui, S. Islam, M. M. Reddy, N. Khandoker, and V. L. C. Chen, “Recent progress and evolution of coolant usages in conventional machining methods: a comprehensive review,” The International Journal of Advanced Manufacturing Technology, vol. 119, no. 1, pp. 3-40, 2022, doi: 10.1007/s00170-021-08182-0.
[28] P. Kawade, and S. Bokade, “Review of cooling techniques used in metal cutting processes,” Advances in Materials and Processing Technologies, vol. 9, no. 3, pp. 1137-1182, 2023, doi: 10.1080/2374068X.2022.2109668.
[29] F. Z. E. Abdelaoui, A. Jabri, and A. E. Barkany, “Optimization techniques for energy efficiency in machining processes a review,” The International Journal of Advanced Manufacturing Technology, vol. 125, no. 7, pp. 2967-3001, 2023, doi: 10.1007/s00170-023-10927-y.
[30] M. Jamil, N. He, Z. Wei, R. T. Mushtaq, A. M. Khan, H. M. K. Hegab, N. Gupta, and N. Khanna, “A state-of-the-art review on sustainability evaluation of machining processes involving the effects of advanced cooling technologies,” The International Journal of Advanced Manufacturing Technology, vol. 131, no. 9, pp. 4377-4402, 2024, doi: 10.1007/s00170-024-13303-6.
[31] J. V. Abellán-Nebot, C. Vila Pastor, and H. R. Siller, “A review of the factors influencing surface roughness in machining and their impact on sustainability,” Sustainability, vol. 16, no. 5, pp. 1917, 2024, doi: 10.3390/su16051917.
[32] M. Richert, M. Dudek, and D. Sala, “Surface quality as a factor affecting the functionality of products manufactured with metal and 3D printing technologies,” Materials, vol. 17, no. 21, pp. 5371, 2024, doi: 10.3390/ma17215371.
[33] A. P. Golhin, R. Tonello, J. R. Frisvad, S. Grammatikos, and A. Strandlie, “Surface roughness of as-printed polymers: a comprehensive review,” The International Journal of Advanced Manufacturing Technology, vol. 127, no. 3, pp. 987-1043, 2023, doi: 10.1007/S00170-023-11566-Z.
[34] M. Hadad, S. Attarsharghi, M. D. Abyaneh, P. Narimani, J. Makarian, A. Saberi, and A. Alinaghizadeh, “Exploring new parameters to advance surface roughness prediction in grinding processes for the enhancement of automated machining,” Journal of Manufacturing and Materials Processing, vol. 8, no. 1, pp. 41, 2024, doi: 10.3390/jmmp8010041.
[35] X. Liang, Z. Liu, B. Wang, C. Wang, and C. F. Cheung, “Friction behaviors in the metal cutting process: state of the art and future perspectives,” International Journal of Extreme Manufacturing, vol. 5, no. 1, pp. 012002, 2022, doi: 10.1088/2631-7990/ac9e27.
[36] J. You, C. Wang, D. Qiu, S. Y. Chen, Z. T. Liu, and H. Y. Wang, “Response of partitioning to cooling rate for different solutes in aluminum alloys,” Journal of Materials Science & Technology, vol. 185, pp. 155-164, 2024, doi: 10.1016/j.jmst.2023.11.009.
[37] L. Wang, Y. Ye, D. Kong, T. Bai, X. Yao, S. Yuan, P. Zou, and M. Xia, “Advances and perspectives in single photon detectors: Principles, Materials, Cooling Systems, and Applications,” Advanced Optical Materials, vol. 13, no. 19, pp. 2500138, 2025, doi: 10.1002/adom.202500138.
[38] X. Zhou, L. He, T. Zhou, S. Yuan, P. Tian, and Z. Zou, “A comprehensive review of tool surface texturing in the cutting process,” The International Journal of Advanced Manufacturing Technology, vol. 123, no. 7, pp. 2427-2467, 2022, doi: 10.1007/s00170-022-10305-0.
[39] J. Liu, G. Chen, L. Zhao, Z. Yu, and X. Jia, “Research status and development trend of cutting surface integrity of aerospace alloy materials,” The International Journal of Advanced Manufacturing Technology, vol.127, no. 1, pp. 45-63, 2023, doi: 10.1007/s00170-023-11558-z.
[40] K. M. J. Rashid, “Optimize the Taguchi method, the signal-to-noise ratio, and the sensitivity,” Int J Stat Appl Math, vol. 8, no. 6, pp. 64-70, 2023, doi: 10.22271/maths.2023.v8.i6a.1406.
[41] M. M. Etghani, and H. Boodaghi, “Artificial neural networks and taguchi methods for energy systems optimization: A comprehensive review,” Energy Engineering: Journal of the Association of Energy Engineers, vol. 122, no. 11, pp. 4385, 2025, doi: 10.32604/ee.2025.070668.
[42] R. E. Azooz, and A. Diab, “Evaluating of indium corrosion in sodium borate solutions: A Taguchi method approach,” Journal of Dispersion Science and Technology, pp. 1-12, 2025, doi: 10.1080/01932691.2025.2476764.
[43] N. L. Bhirud, A. S. Dube, A. S. Patil, ans K. S. Bhole, “Modeling and multi-objective optimization of cutting parameters using response surface method for milling of medium carbon steel (EN8),” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 18, no. 10, pp. 7059-7087, 2024, doi: 10.1007/s12008-023-01267-y.
[44] C. L. F. De Assis, G. R. Mecelis, R. T. Coelho, and A. R. Rodrigues, “Enhancing surface quality in micro end-milling of ultrafine-grained low carbon steel micromolds through strategic toolpath selection,” The International Journal of Advanced Manufacturing Technology, pp. 1-17, 2025, doi: 10.1007/s00170-025-15312-5.
[45] S. Patil, T. Sathish, P. S. Rao, M. S. Prabhudev, V. Vijayan, S. Rajkumar, and E. Makki, “Optimization of surface roughness in milling of EN 24 steel with WC-Coated inserts using response surface methodology: Analysis using surface integrity microstructural characterizations,” Frontiers in Materials, vol. 11, pp. 1269608, 2024, doi: 10.3389/fmats.2024.1269608.
[46] A. M. Adem, and H. E. Azmeraw, “The manufacturing practices and parameters optimization on abrasive jet machining for surface preparation of mild steels,” Results in Engineering, vol. 15, pp. 100457, 2022, doi: 10.1016/j.rineng.2022.100457.
[47] M. Kowalczyk, and K. Tomczyk, “Quality of machined surface and cutting force when milling NiTi alloys,” Materials, vol. 17, no. 24, pp. 6122, 2024, doi: 10.3390/ma17246122.
[48] N. T. Tuli, A. N. Amin, R. Kaisar, F. I. Dhrubo, and A. Bin Rashid, “Optimisation of machining parameters in high-speed end milling of hardened AISI H13 die steel by integrating RSM and GA,” Advances in Materials and Processing Technologies, vol. 11, no. 3, pp. 1564-1582, 2025, doi: 10.1080/2374068X.2024.2397153.
[49] I. H. Tusar, P. B. Zaman, M. Mia, S. Saha, and N. R. Dhar, “Influence of grinding parameters on surface roughness and temperature under carbon nanotube assisted MQL,” Advances in Materials and Processing Technologies, vol. 9, no. 1, pp. 92-115, 2023, doi: 10.1080/2374068X.2022.2085954.
[50] D. J. H. Gabriel, M. Parthiban, I. Kantharaj, and N. Beemkumar, “A review on sustainable alternatives for conventional cutting fluid applications for improved machinability,” Machining Science and Technology, vol. 27, no. 2, pp. 157-207, 2023, doi: 10.1080/10910344.2023.2194966.
[51] M. A. A. Khan, M. Hussain, S. K. Lodhi, B. Zazoum, M. Asad, and A. Afzal, “Green metalworking fluids for sustainable machining operations and other sustainable systems: a review,” Metals, vol. 12, no. 9, pp. 1466, 2022, doi: 10.3390/met12091466.
[52] A. K. Katam, R. C. Mohanty, and A. Kolakoti, “The role of bio-based cutting fluids for sustainable manufacturing and machining processes: A holistic review. Mechanical Engineering for Society and Industry, vol. 3, no. 3, pp. 166-180, 2023, doi: 10.31603/mesi.10680.
Published
2026-01-10
How to Cite
[1]
F. Faing, E. Yudo, and Z. Kurniawan, “Cooling Media–Driven Shift in Dominant Machining Mechanisms: A Taguchi-Based Optimization of Surface Roughness in CNC Milling of S45C Steel”, In. Sci. Ed. J, vol. 7, no. 1, pp. 118-126, Jan. 2026.
Section
Articles

Most read articles by the same author(s)