Effect of Heat Treatment and Tempering Process on the Hardness of S55c Steel as A Cutting Blade Material for Plastic Shredding Machines
Abstract
Purpose of the study: This study aims to optimize the heat treatment process of S55C medium-carbon steel by examining the combined effects of austenitizing temperature, quenching media, and tempering temperature on impact toughness.
Methodology: An experimental approach was employed using quenching and tempering treatments. Quenching was performed at three austenitizing temperatures (950°C, 1000°C, and 1050°C) with three different cooling media—salt water, oil, and seawater—followed by tempering at 100°C, 200°C, 300°C, and 400°C. All heating processes were conducted in an electric furnace. Parameter optimization was carried out using the Taguchi method with an L9 orthogonal array. Mechanical performance was evaluated through Charpy impact testing, and confirmation experiments were conducted to validate the optimal parameter combination.
Main Findings: The Taguchi analysis identified the optimal quenching condition at an austenitizing temperature of 1050°C with salt water as the cooling medium, yielding the highest impact toughness. Confirmation tests supported the reliability of this result. Additionally, the tempering process showed that increasing the tempering temperature decreased hardness while significantly improving toughness, indicating effective stress relief and improved ductility in the steel microstructure.
Novelty/Originality of this study: The novelty of this study lies in the integrated optimization of quenching temperature and diverse cooling media, including seawater, using the Taguchi method, with a specific focus on toughness rather than hardness alone. This research provides new insights into tailoring heat treatment parameters for S55C steel to achieve superior impact resistance, offering practical guidance for more efficient and application-oriented heat treatment strategies in manufacturing industries.
References
H. Wang, C. Wang, J. Liang, A. Godfrey, Y. Wang, V. Weng, and W. Cao, “Effect of alloying content on microstructure and mechanical properties of Fe–Mn–Al–C low-density steels,” Materials Science and Engineering: A, vol. 886, pp. 145675, 2023, doi: 10.1016/j.msea.2023.145675.
R. Liu, N. Ivanovich, C. Zhu, Y. P. Yeo, X. Wang, M. Seita, and F. M. Lauro, “Influence of grain size and crystallographic orientation on microbially influenced corrosion of low-carbon steel in artificial seawater,” Materials & Design, vol. 234, pp. 112353, 2023, doi: 10.1016/j.matdes.2023.112353.
T. T. Win, L. Prasittisopin, P. Jongvivatsakul, and S. Likitlersuang, “Investigating the role of steel and polypropylene fibers for enhancing mechanical properties and microstructural performance in mitigating conversion effects in calcium aluminate cement,” Construction and Building Materials, vol. 430, pp. 136515, 2024, doi: 10.1016/j.conbuildmat.2024.136515.
Y. J. Tian, M. Pang, and F. Q. Ji, “Study on the impact of laser power variation on the performance of Ti-6Al-4 V coating by laser cladding on HT250,” Optics & Laser Technology, vol. 175, pp. 110809, 2024, doi: 10.1016/j.optlastec.2024.110809.
T. Alomayri, A. Raza, K. M. Elhadi, and F. Shaikh, “Mechanical, microstructural, and thermal characterization of geopolymer composites with nano‐alumina particles and micro steel fibers,” Structural Concrete, vol. 26, no. 2, pp. 1540-1559, 2025, doi: 10.1002/suco.202400477
Y. Shang, M. Fan, S. Jiang, and Z. Zhang, “Effects of carbon content on the microstructure and tensile properties of a low-density steel,” International Journal of Minerals, Metallurgy and Materials, vol. 32, no. 2, pp. 391-401, 2025, doi: 10.1007/s12613-024-2937-1.
A. O. Araoyinbo, A. Samuel, A. M. M. Abdullah, and M. Biodun, “The effect of quenching on high-temperature heat treated mild steel and its corrosion resistance,” Pertanika Journal of Science & Technology, vol. 30, no. 1, 2022, doi: 10.47836/pjst.30.1.16.
L. Lebea, and M. Pita, “The effect of cooling media on the corrosion behavior of mild steel after heat treatment,” Int. J. Emerg. Technol. Adv. Eng, vol. 12, no. 9, pp. 158-164, 2022, doi: 10.46338/ijetae0922_16.
T. S. Amosun, S. O. Hammed, A. M. G. de Lima, and I. Habibi, “Effect of quenching media on mechanical properties of welded mild steel plate,” Mechanical Engineering for Society and Industry, vol. 3, no. 1, pp. 4-11, 2023, doi: 10.31603/mesi.7121.
Q. Guo, Y. Deng, and W. Ma, “An experimental study on quenching of metallic spheres in seawater,” Experimental Thermal and Fluid Science, vol. 148, pp. 110990, 2023, doi: 10.1016/j.expthermflusci.2023.110990.
Ejiko, S. O., Fatona, A. S., & Ibikunle, R. A. (2024). Investigation of quenching on microstructure and mechanical properties of mild steel. IOSR Journal of Engineering (IOSRJEN), 14(4), 29-38, 2024, doi: .
S. H. Khazaal, and H. F. Makki, “Characterization of corrosion behavior of ST37-2 low-carbon steel in a cooling tower using seawater as the working media,” Journal of Bio-and Tribo-Corrosion, vol. 11, no. 4, pp. 97, 2025, doi: 10.1007/s40735-025-01018-4.
I. J. Khamas, and H. D. Lafta, “Effect of heat treatments and carbon content on the damping properties of structural steel,” Journal of Engineering, vol. 29, no. 7, pp. 106-119, 2023, doi: 10.31026/j.eng.2023.07.07.
Y. Wang, R. Wang, W. Yu, and Y. Gao, “Effect of heat treatment parameters on the modification of nano residual austenite of low-carbon medium-chromium steel,” Nanomaterials, vol. 13, no. 11, pp. 2829, 2023, doi: 10.3390/nano13212829.
N. Çömez, M. Yurddaskal, and H. Durmuş, “Effect of solutionizing and quenching treatment on Ti6Al4V alloy: a study on wear, cavitation erosion and corrosion resistance,” Journal of Materials Science, vol. 58, no. 24, pp. 10201-10216, 2023, doi: 10.1007/s10853-023-08688-w.
J. Xu, T. Zhang, and X. Li, “Research on the process, energy consumption and carbon emissions of different magnesium refining processes,” Materials, vol. 16, no. 9, pp. 3340, 2023, doi: 10.3390/ma16093340.
K. Gao, Y. Zhang, J. Yi, F. Dong, and P. Chen, “Overview of surface modification techniques for titanium alloys in modern material science: A comprehensive analysis,” Coatings, vol. 14, no. 1, pp. 148, 2024, doi: 10.3390/coatings14010148.
Z. Huang, H. Xiao, J. Yu, H. Zhang, H. Huang, K. Yu, and R. Zhou, “Effects of different annealing cooling methods on the microstructure and properties of TA10 titanium alloys,” Journal of Materials Research and Technology, vol. 18, pp. 4859-4870, 2022, doi: 10.1016/j.jmrt.2022.04.149.
M. Gaggiotti, L. Albini, P. E. Di Nunzio, A. Di Schino, G. Stornelli, and G. Tiracorrendo, “Ultrafast heating heat treatment effect on the microstructure and properties of steels,” Metals, vol. 12, no. 8, pp. 1313, 2022, doi: 10.3390/met12081313.
M. Tayyebi, and M. DerakhshaniMolayousefi, “A review on the effect of various rolling regimes (cryo, cold, warm, hot) and post-annealing on high-entropy alloys: microstructure evolution, deformation mechanisms, and mechanical properties,” Archives of Civil and Mechanical Engineering, vol. 24, no. 1, pp. 16, 2023, doi: 10.1007/s43452-023-00826-0.
X. Lu, C. Chen, G. Zhang, M. Chiumenti, M. Cervera, H. Yin, L. Ma, and X. Lin, “Thermo-mechanical simulation of annealing heat treatment of Ni-based GH4099 superalloy made by laser powder bed fusion,” Additive Manufacturing, vol. 73, pp. 103703, 2023, doi: 10.1016/j.addma.2023.103703.
H. Z. Jiang, Z. Y. Li, T. Feng, P. Y. Wu, Q. S. Chen, S. K. Yao, and J. Y. Hou, “Effect of annealing temperature and strain rate on mechanical property of a selective laser melted 316L stainless steel,” Acta Metallurgica Sinica (English Letters), vol. 35, no. 5, pp. 773-789, 2022, doi: 10.1007/s40195-021-01342-x.
P. J. Yu, C. Y. Huang, Y. T. Lin, Y. S. Su, H. W. Yen, C. A. Hsu, S. H. Wang, J. W. Yeh, W. S. Hou, T. R. Lin, and T. W. Hsu, “Crystalline characteristics of a dual-phase precipitation hardening stainless steel in quenched solid solution and aging treatments,” Materials Chemistry and Physics, vol. 280, pp. 125804, 2022, doi: 10.1016/j.matchemphys.2022.125804.
L. Liu, J. Yang, X. Li, M. Sun, Y. Ren, M. Li, H. Yang, and H. Wang, “A heat-resistant steel with excellent high-temperature strength-ductility based on a combination of solid-solution strengthening and precipitation hardening,” Materials Science and Engineering: A, vol. 915, pp. 147218, 2024, doi: 10.1016/j.msea.2024.147218.
T. Z. Xu, T. Wang, M. S. Wang, S. Zhang, C. H. Zhang, C. L. Wu, X. Y. Sun, H. T. Chen, and J. Chen, “Influence of solid solution time on microstructure and precipitation strengthening of novel maraging steels,” Materials Science and Engineering: A, vol. 920, pp. 147535, 2025, doi: 10.1016/j.msea.2024.147535.
C. Rodenkirchen, A. K. Ackerman, P. M. Mignanelli, A. Cliff, G. J. Wise, P. Breul, J. O. Douglas, P. A. J. Bagot, M. P. Moody, M. Appleton, M. P. Ryan, M. C. Hardy, S. Pedrazzini, and H. J. Stone, “Effect of alloying on the microstructure, phase stability, hardness, and partitioning behavior of a new dual-superlattice nickel-based superalloy,” Metallurgical and Materials Transactions A, vol. 54, no. 5, pp. 1902-1923, 2023, doi: 10.1007/s11661-023-06972-7.
Y. Zhang, J. Yang, D. Xiao, D. Luo, C. Tuo, and H. Wu, “Effect of quenching and tempering on mechanical properties and impact fracture behavior of low-carbon low-alloy steel,” Metals, vol. 12, no. 7, pp. 1087, 2022, doi: 10.3390/met12071087.
E. Tkachev, S. Borisov, A. Belyakov, T. Kniaziuk, O. Vagina, S. Gaidar, and R. Kaibyshev, “Effect of quenching and tempering on structure and mechanical properties of a low-alloy 0.25 C steel,” Materials Science and Engineering: A, vol. 868, pp. 144757, 2023, doi: 10.1016/j.msea.2023.144757.
E. Tang, Q. Yuan, R. Zhang, J. Ren, Z. Li, and G. Xu, “Rapid heat treatment yields excellent strength and ductility balance in a wear-resistant steel,” Journal of Materials Research and Technology, vol. 30, pp. 2596-2608, 2024, doi: 10.1016/j.jmrt.2024.04.003.
M. Yang, Z. Jiang, C. Jia, and X. Chen, “Exploring the variable ranges of tensile strength of a high-toughness low-alloy CrNiMo steel,” Materials Today Communications, vol. 44, pp. 112057, 2025, doi: 10.1016/j.mtcomm.2025.112057.
D. Grima, N. Layeb, R. Li, B. Zammit, B. Attard, A. Zammit, and G. Cassar, “Enhancing fatigue resistance in WAAM AZ80 magnesium and wrought Al6082 through shot peening: A comparative study,” Progress in Additive Manufacturing, vol. 10, no. 12, pp. 11627-11645, 2025, doi: 10.1007/s40964-025-01306-y.
X. Pan, S. Xin, J. Sun, S. Zhang, W. Zhou, and J. Cai, “Achieving improved dynamic mechanical properties in twinning-dominated titanium alloys,” Materials Science and Engineering: A, 920, 147570, 2025, doi: 10.1016/j.msea.2024.147570.
Y. Yu, X. Wang, Y. Wu, M. Ma, and G. Gao, “The impact of backplate support conditions on ceramic fracture and energy absorption in the penetration resistance process of ceramic/metal composite armor,” Ceramics International, vol. 50, no. 7, pp. 10325-10339, 2024, doi: 10.1016/j.ceramint.2023.12.344.
A. Diniță, A. Neacșa, A. I. Portoacă, M. Tănase, C. N. Ilinca, and I. N. Ramadan, “Additive manufacturing post-processing treatments, a review with emphasis on mechanical characteristics,” Materials, vol. 16, no. 13, pp. 4610, 2023, doi: 10.3390/ma16134610.
Elshaer, R. N., El-Hadad, S., & Nofal, A. (2023). Influence of heat treatment processes on microstructure evolution, tensile and tribological properties of Ti6Al4V alloy. Scientific Reports, 13(1), 11292, 2023, doi: .
G. H. Lee, M. Park, B. Kim, J. B. Jeon, S. Noh, and B. J. Kim, “Evaluation of precipitation phase and mechanical properties according to aging heat treatment temperature of Inconel 718,” Journal of Materials Research and Technology, vol. 27, pp. 4157-4168, 2023, doi: 10.1016/j.jmrt.2023.10.196.
G. Toktaş, and A. Biçer, “Fracture surface morphology of the impact-loaded tempered spring steels,” Sakarya University Journal of Science, vol. 28, no. 6, pp. 1315-1325, 2024, doi: 10.16984/saufenbilder.1527971.
C. H. Lee, J. M. Baek, H. Y. Ju, S. J. Park, U. S. Ko, J. S. Kwack, and H. U. Hong, “Microstructure-driven post-seam annealing design for enhanced toughness in X70 electric-resistance welded pipes,” Journal of Materials Research and Technology, vol. 36, pp. 3726-3740, 2025, doi: 10.1016/j.jmrt.2025.04.035.
N. Thammachot, N. Taweejun, T. Praditja, P. Juijerm, and W. Homjabok, “Correlation of microstructure, mechanical properties, and strain hardening response via kocks-mecking analysis in heat-treated JIS SK85 high-carbon steel,” The International Journal of Advanced Manufacturing Technology, vol. 139, no. 9, pp. 4613-4630, 2025, doi: 10.1007/s00170-025-16213-3.
Y. Liu, J. Tang, H. Liu, and W. Jiang, “The influence of carbon content gradient and carbide precipitation on the microstructure evolution during carburizing-quenching-tempering of 20MnCr5 bevel gear,” Surface and Coatings Technology, vol. 494, pp. 131387, 2024, doi: 10.1016/j.surfcoat.2024.131387.
J. M. Valentino, A. S. Pramono, A. Syaifudin, H. K. Agustin, L. Shalahuddin, A. Windharto, and K. Sasaki, “Enhancing S45C steel for the primary component of an automatic coupler using quench-tempering techniques,” Journal of Applied Engineering Science, vol. 22, no. 1, pp. 215-222, 2024, doi: 10.5937/jaes0-43988.
A. Leal Matilla, D. Ferrández, M. I. Prieto Barrio, and H. Varum, “Systematic review on the behaviour of carbon and stainless steel reinforcing bars in buildings under high temperatures,” Buildings, vol. 15, no. 9, pp. 1539, 2025, doi: 10.3390/buildings15091539.
G. G. Ribamar, J. D. Escobar, A. K. Da Silva, N. Schell, J. A. Ávila, A. S. Nishikawa, J. P. Oliveira, and H. Goldenstein, “Austenite carbon enrichment and decomposition during quenching and tempering of high silicon high carbon bearing steel,” Acta Materialia, vol. 247, pp. 118742, 2023, doi: 10.1016/j.actamat.2023.118742.
F. Badkoobeh, H. Mostaan, M. Rafiei, H. R. Bakhsheshi-Rad, and F. Berto, “Microstructural characteristics and strengthening mechanisms of ferritic–martensitic dual-phase steels: a review,” Metals, vol. 12, no. 1, pp. 101, 2022, doi: .
He, C., Xiao, G., Hui, P., Li, M., Tong, L., Zhang, Z., & Zou, D. (2024). The new design to improve the stability of retained austenite and mechanical properties in super martensitic stainless steel. Materials Characterization, 217, 114342, 2024, doi: .
Wang, Y. L., Shen, Y. F., Jia, N., Wang, J. J., & Zhao, S. X. (2022). Acicular martensite induced superior strength-ductility combination in a 20Cr2Ni2MoV steel. Materials Science and Engineering: A, 848, 143400, 2022, doI: .
C. Li, C. Liu, Z. Cao, M. Shan, and Y. Bing, “Effect and mechanism of induced crystallization softening treatment on water quality in drinking water distribution system with high hardness water source,” Journal of Environmental Chemical Engineering, vol. 11, no. 5, pp. 110474, 2023, doi: 10.1016/j.jece.2023.110474.
S. I. Müller, G. Chapanova, T. Diekow, C. Kaiser, L. Hamelink, I. P. Hitsov, L. Wyseure, D. H. Moed, L. Palmowski, and T. Wintgens, ”Comparison of cooling tower blowdown and enhanced make up water treatment to minimize cooling water footprint,” Journal of Environmental Management, vol. 367, pp. 121949, 2024, doi: 10.1016/j.jenvman.2024.121949.
W. Luo, X. Yuan, Z. Zhang, C. Cheng, H. Liu, H. Qiu, and X. Cheng, “Effect of volumetric energy density on the mechanical properties and corrosion resistance of laser-additive-manufactured AlCoCrFeNi2. 1 high-entropy alloys,” Journal of Alloys and Compounds, vol. 1010, pp. 178032, 2025, doi: 10.1016/j.jallcom.2024.178032.
G. V. Golwa, D. Romahadi, and I. G. A. Arwati, “Analysis of characteristics of S45C steel changes due to the quenching and tempering process,” World Chemical Engineering Journal, vol. 6, no. 2, pp. 39-43, 2022, doi: 10.62870/wcej.v6i2.17611.
R. Saha, and P. Biswas, “Current status and development of external energy-assisted friction stir welding processes: A review,” Welding in the World, vol. 66, no. 3, pp. 577-609, 2022, doi: 10.1007/s40194-021-01228-7.
T. Chen, C. Ji, J. Yang, Y. Chi, and M. Zhu, “Grain growth kinetics model of high-temperature ferrite and austenite in Ti microalloyed steel during continuous casting,” International Journal of Minerals, Metallurgy and Materials, vol. 32, no. 6, pp. 1390-1403, 2025, doi: 10.1007/s12613-024-2991-8.
C. Ye, M. Wang, Y. Cheng, T. Fu, D. Qin, T. Huang, X. Yang, Z. Li, S. Ma, L. Fu, G. Zhu, and A. Shan, “Efficient grain refinement and remarkable strengthening in low-carbon low-alloy steels by coordinating carbide dissolution and Austenitization,” Materials Characterization, vol. 231, pp. 115838, 2025, doi: 10.1016/j.matchar.2025.115838.
C. H. Magalhães, P. H. Silva, P. C. Azzi, and G. L. Faria, “Effect of austenite grain size on phase transformation and Q&P design for a commercial CMnSi steel,” Journal of Materials Engineering and Performance, vol. 33, no. 13, pp. 6586-6600, 2024, doi: 10.1007/s11665-023-08432-0.
W. Jiang, D. Wu, Q. Zhang, M. Li, and W. Liu, “Effect of tempering time on the microstructure and properties of martensitic stainless steel,” Metals, vol. 14, no. 3, pp. 322, 2024, doi: 10.3390/met14030322.
Y. Zhu, Q. Zhang, Q. Yuan, J. Guan, Y. Yang, and G. Xu, “Effects of tempering temperature on the microstructure, strength, and toughness of medium-carbon Ti–Mo-bearing martensitic steel,” Arabian Journal for Science and Engineering, vol. 47, no. 7, pp. 9061-9073, 2022, doi: 10.1007/s13369-021-06537-z.
Y. Chen, W. Ding, L. Liang, X. Liu, H. Wang, S. Xiao, Q. Chao, Y. Yang, and W. Yang, “Intervention mechanism of carbide precipitation during tempering and its impact on residual stress and mechanical properties of wear-resistant steels,” Ironmaking & Steelmaking, vol. 51, no. 5, pp. 502-512, 2024, doi: 10.1177/03019233241250136.
Copyright (c) 2026 Eko Yudo, Ariyanto Ariyanto, Erwansyah Erwansyah, Zaldy Sirwansyah Suzen, Sugiyarto Sugiyarto, Yuli Dharta, Zulfitriyanto Zulfitriyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and acknowledge that the Integrated Science Education Journal is the first publisher licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.


.png)
.png)





