New Method of Estimation of the Speed of Light in Vacuum Using Q-Values of Beta-Décay-Transitions in Mirrors Nuclei
Abstract
Purpose of the study: The goal of this work is to present a new method named Q-b-decay theory to estimate the speed of light. Our result is compared with the earlier estimations since the first measurement of Roemer in 1676 up to 2022, the latter being measured experimentally by picosecond laser technology.
Methodology: This research is based on an estimation of the speed of light in vaccum. This speed is expressed in terms of the Q-value of b+- decay transitions in mirrors nuclei in the framework of the nuclear model with a nucleon constant density. The speed of light is calculated using the experimental Q-values of 37K and 65As miroirs nuclei.
Main Findings: The research gives the result c = 299 791 777 m/s agreeing excellently with the exact value 299 792 458 m/s with an accuracy at 0.000 23 %. This result shows that the speed c of light is obtained accurately from nuclear properties instead of light properties or electric and magnetic constants. A useful appendix for students details the methods of Roemer, Bradley, Fizeau, and Foucault along with the equations allowing one to calculate the speed of light they found.
Novelty/Originality of this study: Estimating the speed c of light with a high accuracy using a new method based on the properties of b+- decay transitions in mirrors nuclei. As far as we know, it the first time that the speed of light is accurately estimated via a non-optical method 348 years ago since 1676.
References
A. Boudrioua, L’Optique Arabe de la période médiévale. L’exemple d’Ibn al Haytham. Photoniques, vol 79, pp. 34-38, 2015, doi.org/10.1051/photon/20157934
D. Sivoukhine. Cours de physique générale, Tome IV, Optique, Editions Mir Moscou, 1984.
O Roemer. Journal des Sçavans, MDCLXXVI, Académie royale des sciences, pp. 233-236, 1676.
P. Gibbs. How is the speed of light measured? sur Usenet Physics FAQ. University of California, Riverside, 1997. https://web.archive.org/web/SpeedOfLight/measure_c.html
A. Moatti, Les indispensables mathématiques et physiques pour tous, Editions Odile Jacob, Paris, 2006.
J-L. Bobin, J. Lequeux, N. Treps, Mesurer la vitesse de la lumière : c à Paris. Expressions Magazine N°624, 2007. https://www.lajauneetlarouge.com/mesurer-la-vitesse-de-la-lumiere-c-a-paris/.
F. Beaubois, Rœmer et la vitesse de la lumière, OpenEditions Journal. pp. 1-13. 2014. doi.org/10.4000/bibnum.688.
É. Biémont et coll. L’expérience de Fizeau. Presses de l’imprimerie Snel à Liège, Belgique. 2019. https://mumons.be/wp-content/2019/09/catalogue_Fizeau_Umons.pdf
K. Larson. Determining the Speed of Light. http://www.skywave-radio.org/wp-content/uploads/2022/01/3-Speed-of-Light-v08.pdf
D. Dobrijevic Distance to Mars: How far away is the Red Planet? Space, future US Inc. 2022. https://www.space.com/16875-how-far-away-is-mars.html
B. Pire. Hippolyte Fizeau effectue la première mesure précise de la célérité de la lumière dans l'air1849. Commemorations Collection 1999. FranceArchives. Encyclopædia Universalis éditeur. https://francearchives.gouv.fr/fr/pages_histoire/39396#
J. Foiret, Les expériences de Foucault relatives à la vitesse de la lumière. Bulletin de la Sabix, pp.57-62, 2012, doi.org/10.4000/sabix.837.
J. Lequeux. Page d'histoire : Léon Foucault mesure la vitesse de la lumière mai à septembre 1862. Commemorations Collection 2012. https://francearchives.gouv.fr/fr/pages_ histoire/39534
K. M. Evenson et al., Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser. Phys. Rev. Lett, vol. 29, pp, 1346-1349,1972, doi.org/10.1103/PhysRevLett.29.1346.
N. F. Voudoukis, Speed of Light Measurement with a Simple Way. 2018. EJERS, European Journal of Engineering Research and Science, vol.3, pp. 69-73, 2018, doi.org/10.24018/ejers.2018.3.4.714.
H. Kushwaha, P. Adhikaria. Measurement Of Speed Of Light By Various Methods. International Multilingual Journal of Science and Technology (IMJST), vol. 5, pp.1887-1889, 2020, ISSN: 2528-9810.
E Arribas et al. An indirect measurement of the speed of light in a General Physics Laboratory. Journal of King Saud University – Science, vol.32, pp. 2797–2802, 2020, doi.org/10.1016/j.jksus.2020.06.017
D. Raynaud. Les déterminations de la vitesse de la lumière (1676-1983). Étude de sociologie internaliste des sciences. L’année sociologique, vol 63, pp. 359-398, 2013, doi.10.3917/anso.132.0359
F., Mehdi, M. Kiran and K M. Kolwankar. Low-cost experiment to measure the speed of light. 2021. Physics education. 1-6.https://api.semanticscholar.org/CorpusID:237091352
A M. Aljalal. Speed of light measurement with a picosecond diode laser and a voltage-controlled oscillator. 2022. Am. J. Phys, vol 90. pp.935–939, doi.org/10.1119/5.0104758.
Y Liu et al. Measuring the Speed of Light with Updated Hubble Diagram of High-redshift Standard Candlesn, The Astrophysical Journal, vol 949, pp.1-9, 2023, doi.org/10.3847/1538-4357/acc7a5.
R.D. Evans, Le noyau atomique. Dunod. Paris. 1961.
I. Sakho. Electrodynamics Calculations of the Unit Nuclear Radius in Agreement with the Constant Density Model. AASCIT Journal of Physics, vol 4, pp.26-44, 2018. http://www.aascit.org/journal/physics
CODATA, 2022. https://physics.nist.gov/ cgi-bin/cuu/Value?mec2mev.
W.J Huang et al. The Ame2020 atomic mass evaluation. Chin. Phys. C45. 030003, 2021. https://www-nds.iaea.org/ amdc/
S. Guibert Application de la spectroscopie à l’étude de la planète Mars et à la recherche de planètes extrasolaires : caractérisation des spectromètres de l’instrument SPICAM-Light embarqué à bord de la mission spatiale Mars-Express ; développement et optimisation du spectromètre astronomique EMILIE dédié aux mesures de vitesses radiales stellaires. Thèse de doctorat, Université Paris VI – Pierre et Marie Curie, 2005.
M. Hallot-Charmasson. L’astronome du roi et le satellite Hommage à Jean-Dominique Cassini. 2012. https://www.observatoiredeparis.psl.eu/IMG/pdf/le_satellite.pdf
N T. Tillman Earth-Sun Distance Measurement Redefined. 2012. Space Future US Inc. https://www.space.com/17733-earth-sun-distance-astronomical-unit.html
R. Mathevet, LABASTIE, P. Labastie, and T. Lahaye. Fizeau et l’entraînement partiel de l’éther, Photoniques, vol 106, pp.25-29, 2021,doi.org/10.1051/photon/202110625.
B Walker. Optical Engineering Fundamentals, Second Edition, SPIE Press, Bellingham, WA. 2008. https://spie.org/publications/optipedia-free-optics-tt82_25_speed_of_light#_=_
A.A. Michelson. Measurement of the Velocity of Light Between Mount Wilson and Mount San Antonio. 1927. The Astrophysical Journal. vol LXV. N°1. https://adsabs.harvard.edu/full/1927ApJ....65....1M
Copyright (c) 2025 Ibrahima Sakho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and acknowledge that the Schrödinger: Journal of Physics Education is the first publisher licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.