IoT-VR Integrated Framework for Precision Prebiotic Dosing in Intensive Aquaculture: A Technology-Based Approach to Sustainable Fish Production

Keywords: Agricultural Innovation, Food Security, IoT, Virtual Reality, Water Quality

Abstract

Purpose of the study: This study aimed to develop and validate an integrated precision aquaculture framework that combines IoT-controlled multi-prebiotic dosing, centralized environmental monitoring, and virtual reality-based operator training to improve water quality, fish growth performance, and operational competency in intensive multi-pond fish farming systems.

Methodology: A closed-loop precision aquaculture system was implemented for 30 days in 40 homogeneous circular ponds. The system used centralized sensors (dissolved oxygen, pH, temperature), IoT-actuated solenoid valves with inline flow sensors for four prebiotic formulations, Water Quality Index computation, VR-based operator training, and statistical analysis using one-way ANOVA, multiple linear regression, and paired t-tests.

Main Findings: IoT-based management significantly improved Water Quality Index, survival rate, and specific growth rate compared with manual management. Automated prebiotic dosing was volumetrically accurate and consistently on time. Higher water quality strongly correlated with better growth and survival. VR training substantially reduced operator task completion time and operational errors, enhancing overall system efficiency and reliability.

Novelty/Originality of this study: This study presents a fully integrated multidisciplinary precision aquaculture framework that uniquely combines IoT-driven multi-prebiotic automated dosing, centralized environmental monitoring for homogeneous pond networks, and VR-based immersive training as an active human–system interaction layer. It advances current knowledge by demonstrating a scalable, technology-mediated model that unites automation, water quality management, and skill development in intensive aquaculture.

References

F. and A. O. of the U. Nations, “The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action,” FAO, Rome, 2024. doi: 10.4060/cc9620en.

A. Naylor, “A 20-year retrospective review of global aquaculture,” Nature, vol. 591, no. 7851, pp. 551–563, 2021, doi: 10.1038/s41586-021-03308-6.

M. I. Nayoun, S. A. Hossain, K. M. Rezaul, K. N. E. A. Siddiquee, M. S. Islam, and T. Jannat, “Internet of Things-driven precision in fish farming: A deep dive into automated temperature, oxygen, and pH regulation,” Computers, vol. 13, no. 10, p. 267, 2024, doi: 10.3390/computers13100267.

S. Subrata, “Pond water quality monitoring in consumption fish farming industry based on Internet of Things,” Rekayasa, vol. 17, no. 3, p. 25428, 2024, doi: 10.21107/rekayasa.v17i3.25428.

B. Glencross, “Harvesting the benefits of nutritional research to address global challenges in the 21st century,” J. World Aquac. Soc., vol. 54, no. 5, pp. 948–999, 2023, doi: 10.1111/jwas.12948.

A. Mehrim and M. Refaey, “An overview of the implication of climate change on fish farming in Egypt,” Sustainability, vol. 15, no. 2, p. 1679, 2023, doi: 10.3390/su15021679.

M. Nandy and A. Dubey, “Effective surveillance of water quality in recirculating aquaculture systems through the application of intelligent biosensors,” J. NeSciences, vol. 9, no. 4, p. 1575456, 2024, doi: 10.28978/nesciences.1575456.

N. Chansiri, P. Sangkaphet, B. Chaleamwong, C. Kaewklom, and S. Makdee, “Water quality monitoring system for Nile tilapia farming using LoRa technology,” Proceedings of the 2024 International Conference on Intelligent Technology (InCIT). Bangkok, Thailand, pp. 245–250, 2024. doi: 10.1109/InCIT63192.2024.10810514.

J. B. Papolonias, R. Q. Lavilles, and J. I. Miano, “Development of water quality monitoring system for fish farming,” Elektron. Elektr. Inf. J., vol. 14, no. 4, p. 7673, 2025, doi: 10.11591/eei.v14i4.7673.

S. Kanwal, “An optimal Internet of Things-driven intelligent decision-making system for real-time fishpond water quality monitoring and species survival,” Sensors, vol. 24, no. 23, p. 7842, 2024, doi: 10.3390/s24237842.

P. M. Krishna, K. R. Rao, and T. Srinivas, “Analysis of water quality parameters in aquaculture ponds near Vijayawada,” Environ. Monit. Assess., vol. 192, no. 6, p. 387, 2020, doi: 10.1007/s10661-020-08348-7.

A. H. Ahmad, N. M. Y. Ikrimiah, M. N. N. Irawan, R. Munadi, and N. Fitriyanti, “Water quality monitoring and control system in koi fish cultivation based on Internet-of-Things (IoT),” J. Res. Educ., vol. 21, no. 1, p. 40760, 2025, doi: 10.17529/jre.v21i1.40760.

P. Erawati, D. Prasti, and T. B. Kriswinarso, “Internet of Things (IoT)-based water quality monitoring system design for tilapia fish farming ponds,” Brilliance, vol. 5, no. 2, p. 6927, 2025, doi: 10.47709/brilliance.v5i2.6927.

R. Islam and M. Mithun, “Probiotics in aquaculture: A pathway to safer and healthier fish farming,” Int. J. Fish. Aquat. Sci., vol. 9, no. 4, pp. 30–38, 2024, doi: 10.26832/24566632.2024.0904030.

A. Ullah, E. Iqbal, S. Gul, A. U. Husna, and M. Saidu, “Impact of big fish probiotic on growth and feed efficiency of Cyprinus carpio fish in District Haripur,” J. Basic Appl. Aquat. Sci., vol. 6, no. 1, pp. 185–194, 2025, doi: 10.56536/jbahs.v6i1.185.

S. N. Sellappan, A. P. Junfithrana, P. E. Bhaskaran, F. Ridha, M. Chinnappandi, and T. Subramaniam, “Analysis of Quadrotor Design UAV Utilizing Biplane Configuration with NACA Airfoils,” Engineering Proceedings, vol. 107, no. 1. p. 109, 2025. doi: 10.3390/engproc2025107109.

S. N. Madhulika, “Multifaceted role of probiotics in enhancing health and growth of aquatic animals: Mechanisms, benefits, and applications in sustainable aquaculture—A review and bibliometric analysis,” Adv. Regen. Eng., vol. 2025, p. 5746972, 2025, doi: 10.1155/anu/5746972.

O. A. Alghamdi, “Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) supplementation of formulated diets applied to juvenile Nile tilapia, Oreochromis niloticus: Impact on growth performance and nutrient digestibility,” Fishes, vol. 8, no. 12, p. 574, 2023, doi: 10.3390/fishes8120574.

S. H. Banafsha and M. S. Reddy, “Synergistic effects of probiotics and oligosaccharide prebiotics on water quality and growth performance of Litopenaeus vannamei,” African J. Fish. Aquat. Res., vol. 27, no. 7, p. 7961, 2025, doi: 10.9734/ajfar/2025/v27i7961.

J. M. Braz, “Enhancing juvenile Nile tilapia growth and health through prebiotic and probiotic supplementation: A comprehensive study,” J. Exp. Agric. Int., vol. 46, no. 8, pp. 2795–2809, 2024, doi: 10.9734/jeai/2024/v46i82795.

S. S. Hosseini, M. Sudaagar, H. Zakariaee, H. Paknejad, K. Baruah, and P. Norouzitalab, “Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish Danio rerio,” BMC Vet. Res., vol. 20, no. 1, p. 353, 2024, doi: 10.1186/s12866-024-03459-2.

C. Elendu, “The impact of simulation-based training in medical education: A review,” Medicine (Baltimore)., vol. 103, no. 27, p. e38813, 2024, doi: 10.1097/MD.0000000000038813.

A. K. Ghazali, N. A. Ab. Aziz, K. Ab. Aziz, and N. T. Kian, “The usage of virtual reality in engineering education,” Educ. Sci., vol. 13, no. 4, pp. 371–385, 2024, doi: 10.1080/2331186X.2024.2319441.

S. Pahmi, A. P. Junfithrana, E. Supriyadi, A. Hendriyanto, and L. H. Muhaimin, “Exploring Virtual Reality’s Impact on Math Anxiety: Transforming the Learning Experience,” J. Posthumanism, vol. 5, no. 1, pp. 1391–1412, 2025, doi: 10.63332/joph.v5i1.683.

D. Chatterjee, S. Sadhu, D. Mondal, and D. Kalindi, “Use of virtual reality simulation practices for farmers training,” Methods Approaches J., vol. 10, p. 701159, 2025, doi: 10.29321/maj.10.701159.

S. Mansour, “Virtual reality in agricultural vocational education: A systematic review,” Comput. Educ. Artif. Intell., vol. 5, p. 100165, 2024, doi: 10.1016/j.caeai.2024.100165.

S. Pahmi et al., “Implementation of virtual reality to enhance spatial abilities: a study on aspects, effects, and differences in participants’ initial ability levels,” Int. J. Didact. Math. Distance Educ., vol. 1, no. 2, pp. 54–69, 2024.

J. Pulley, D. Jepsen, A. Bowling, and T. Kitchel, “School-based agricultural education teachers’ lived experience of integrating virtual reality into their classroom,” J. Agric. Educ., vol. 65, no. 1, pp. 165–182, 2024, doi: 10.5032/jae.v65i1.165.

Y. Y. Liu, D. P. Wang, J. Gu, and Y. F. Fu, “Teaching design and implementation of traffic system simulation course based on a computer virtual reality software under the background of engineering education,” Comput. Appl. Eng. Educ., vol. 32, no. 1, p. e22769, 2024, doi: 10.1002/cae.22769.

R. Yusup, “Analyzing the Role of Information Technology in Enhancing Teachers’ Attitudes Towards E-Learning: A Case Study in Indonesian Higher Education,” Lit. Int. J. Soc. Sci. Humanit., vol. 2, no. 1, pp. 41–51, 2023, doi: 10.52005/rrkq1797.

Y. Helsa and S. Yulianti, “Technology Liberating or Controlling? A Critical Educational Philosophy Review of Digital Systems-Based Learning,” Lit. Int. J. Soc. Sci. Humanit., vol. 3, no. 1, pp. 90–106, 2024, doi: 10.52005/literate.v3i1.20.

L. H. Muhaimin, D. Dasari, A. Hendriyanto, R. Andriatna, and S. Sahara, “Can Augmented Reality Enhance Students’ Mathematical Literacy? A Study on Technological Development for Learning Practice,” Int. J. Math. Educ. Sci. Technol., pp. 1–34, 2025, doi: 10.1080/0020739X.2025.2502398.

I. Sofian, “Digital Pedagogy and Literacy Development: The Impact of ICT on Reading Comprehension in Primary Classrooms,” Lit. Int. J. Soc. Sci. Humanit., vol. 2, no. 1, pp. 41–56, 2023, doi: 10.52005/h8r4c231.

D. K. Mohanty, S. Mishra, and P. K. Sahoo, “Automated feeding systems in aquaculture: A review,” Aquac. Eng., vol. 93, p. 102156, 2021, doi: 10.1016/j.aquaeng.2021.102156.

A. Sharma, I. Batra, S. Sharma, and A. P. Junfithrana, “Multimodal Fusion for Enhanced Human–Computer Interaction,” Engineering Proceedings, vol. 107, no. 1. p. 81, 2025. doi: 10.3390/engproc2025107081.

R. Mubarak, H. Zarory, A. Ullah, and A. Faizal, “Sistem monitoring pH air kolam ikan lele menggunakan sensor BGT-D718-PH dan PLC Outseal berbasis Internet of Things,” Bina Insa. ICT J., vol. 6, no. 1, pp. 5387–5398, 2024, doi: 10.47065/bits.v6i1.5387.

A. B. Wibisono and R. Jayadi, “Experimental IoT system to maintain water quality in catfish pond,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 340–348, 2024, doi: 10.14569/IJACSA.2024.0150340.

M. B. Ibáñez and C. Delgado-Kloos, “Augmented reality for STEM learning: A systematic review,” Comput. Educ., vol. 123, pp. 109–123, 2018, doi: 10.1016/j.compedu.2018.05.002.

T. G. Mikropoulos and A. Natsis, “Educational virtual environments: A ten-year review of empirical research (1999–2009),” Comput. Educ., vol. 56, no. 3, pp. 769–780, 2011, doi: 10.1016/j.compedu.2010.10.020.

H. M. Danielsson and V. Bengtsson, “Human-automation interaction in agricultural machinery: A review,” Biosyst. Eng., vol. 204, pp. 174–194, 2021, doi: 10.1016/j.biosystemseng.2021.01.021.

K. H. R. Raza, S. Dhingra, and T. K. Bagri, “Precision aquaculture: An intelligent IoT-based framework for monitoring aquatic environment,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 2, pp. 625–634, 2023.

H. Sudibyo, F. T. Yuniko, A. Fadel, L. S. Lesmana, and R. Efendi, “Sistem monitoring budidaya perikanan berbasis IoT fish feeder sebagai implementasi smart farming,” J. Inf. Syst. Informatics Entrep., vol. 8, no. 2, pp. 4544–4555, 2024, doi: 10.35145/joisie.v8i2.4544.

T. J. Lansley, I. A. M. Ahmed, and S. N. Kulatunga, “Conceptual framework for precision aquaculture using IoT and machine learning: A review,” Aquac. Fish., vol. 8, no. 3, pp. 297–308, 2023, doi: 10.1016/j.aaf.2022.10.005.

F. Ashfaq, N. Z. Jhanjhi, N. A. Khan, C. Jia, U. Ihsan, and A. P. Junfithrana, “Latent Structural Discovery in Clinical Texts via Transformer-Based Embeddings and Token Graphs,” Engineering Proceedings, vol. 107, no. 1. pp. 73–84, 2025. doi: 10.3390/engproc2025107073.

U. Nations, “World Population Prospects 2022: Summary of Results,” Department of Economic and Social Affairs, Population Division, 2022.

M. G. Bondad-Reantaso, “Viewpoint: SARS-CoV-2 (the cause of COVID-19 in humans) is not known to infect aquatic food animals nor contaminate their products,” Asian Fish. Sci., vol. 33, pp. 74–78, 2020, doi: 10.33997/j.afs.2020.33.1.009.

W. Klinger and A. G. J. Tacon, “Environmental impacts of aquaculture,” in Encyclopedia of Food Security and Sustainability, vol. 3, P. Ferranti, E. M. Berry, and J. R. Anderson, Eds. Oxford: Elsevier, 2019, pp. 233–239. doi: 10.1016/B978-0-08-100596-5.22086-7.

M. S. Munir, I. S. Bajwa, M. A. Naeem, and B. Ramzan, “Design and implementation of an IoT system for smart energy consumption and smart irrigation in tunnel farming,” Energies, vol. 11, no. 12, p. 3427, 2018, doi: 10.3390/en11123427.

L. G. Ross, K. L. Telfer, L. Falconer, D. C. M. Soto, and J. Aguilar-Manjarrez, “Site selection and carrying capacities for inland and coastal aquaculture,” FAO / Institute of Aquaculture, University of Stirling, Rome, 2013.

R. E. Moritz and J. K. Heikkila, “Effects of dissolved oxygen and pH on growth and survival of juvenile Nile tilapia,” Aquaculture, vol. 455, pp. 78–85, 2016, doi: 10.1016/j.aquaculture.2016.01.012.

M. M. Nakhaee, M. A. O. Dawood, S. Mortazavi, S. Bahabadi, and S. Khosravi, “Effects of prebiotic supplementation on growth performance, immune function, and disease resistance in aquatic animals: A meta-analysis,” Rev. Aquac., vol. 13, no. 4, pp. 2140–2158, 2021, doi: 10.1111/raq.12558.

K. G. Abelardo and A. H. Estoque, “Feedback control systems in biological applications: A comprehensive review,” IEEE Access, vol. 10, pp. 45127–45146, 2022, doi: 10.1109/ACCESS.2022.3170258.

R. Parasuraman and V. Riley, “Humans and automation: Use, misuse, disuse, abuse,” Hum. Factors, vol. 39, no. 2, pp. 230–253, 1997, doi: 10.1518/001872097778543886.

S. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt, “A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda,” Comput. Educ., vol. 147, p. 103778, 2020, doi: 10.1016/j.compedu.2019.103778.

F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Q., vol. 13, no. 3, pp. 319–340, 1989, doi: 10.2307/249008.

N. R. Aini, N. Diniarti, and W. A. Diamahesa, “The effect of herbal probiotic supplementation on the growth performance and survival rate of Nile tilapia (Oreochromis niloticus) in a closed aquaculture system,” J. Bioteknol., vol. 25, no. 2, p. 9072, 2025, doi: 10.29303/jbt.v25i2.9072.

D. A. Kolb, Experiential Learning: Experience as the Source of Learning and Development, 2nd ed. Upper Saddle River, NJ: Pearson Education, 2015.

S. M. Fiore and M. Salas, “Human-automation teaming: Foundations and future directions,” Annu. Rev. Psychol., vol. 72, pp. 539–565, 2021, doi: 10.1146/annurev-psych-081920-042652.

R. R. Hoffman and D. D. Woods, “Simon’s slice: Five fundamental tradeoffs that bound the performance of human work systems,” IEEE Intell. Syst., vol. 26, no. 6, pp. 67–71, 2011, doi: 10.1109/MIS.2011.97.

J. Sweller, J. J. G. Merriënboer, and F. Paas, “Cognitive Architecture and Instructional Design : 20 Years Later,” Educ. Psychol. Rev., pp. 261–292, 2019, doi: 10.1007/s10648-019-09465-5.

O. Spyrou, M. Ariza-Sents, and S. Vélez, “Enhancing education in agriculture via XR-based digital twins: A novel approach for the next generation,” Appl. Syst. Insights, vol. 8, no. 2, p. 38, 2025, doi: 10.3390/asi8020038.

L. J. Cronbach, “Coefficient alpha and the internal structure of tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951, doi: 10.1007/BF02310555.

S. Tyagi, B. Sharma, P. Singh, and R. Dobhal, “Water quality assessment in terms of water quality index,” Am. J. Water Resour., vol. 1, no. 3, pp. 34–38, 2013, doi: 10.12691/ajwr-1-3-3.

W. E. Ricker, “Growth rates and models,” in Fish Physiology, vol. 8, W. S. Hoar, D. J. Randall, and J. R. Brett, Eds. New York: Academic Press, 1979, pp. 677–743. doi: 10.1016/S1546-5098(08)60034-5.

O. D. Okey et al., “Correction: Okey et al. BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning. Sensors 2022, 22, 7409,” Sensors, vol. 25, no. 19. pp. 1–2, 2025. doi: 10.3390/s25196125.

W. Y. Leong, “IoT and Smart Manufacturing for Poultry Farm BT - Proceedings of the 7th International Conference on Knowledge Innovation and Invention, Volume 2,” 2025, pp. 205–213.

M. S. Ahammed, R. A. Ananta, J.-J. Tiang, M. Nahas, N. S. S. Singh, and M. A. Haque, “A high-gain THz microstrip patch antenna designed for IoT and 6G communications with predicted efficiency using machine learning approaches,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 13, pp. 1–14, 2025, doi: https://doi.org/10.1016/j.prime.2025.101058.

A. P. Firdausi, A. Y. Mauladina, R. Rahman, E. A. Prama, and R. A. Tunisah, “Effects of Spirulina meal supplementation on growth and survival rate of royal whiptail catfish fry (Sturisoma panamense),” J. Akuakultur Teknol. Akuatik, vol. 14, no. 1, p. 67727, 2025, doi: 10.20473/jafh.v14i1.67727.

D. W. P. Rumbewas, “Effects of salinity and feed on growth and survival rate of juvenile payangka (Ophieleotris aporos),” J. Akuakultur Selat Makassar, vol. 13, no. 1, p. 60178, 2025, doi: 10.35800/jasm.v13i1.60178.

A. Hendriyanto, D. Suryadi, S. Sahara, D. Fardian, I. Pauji, and L. H. Muhaimin, “From tools to thought partners: Optimizing technology as extended cognition for innovative didactic design,” AIP Conf. Proc., vol. 3220, no. 1, pp. 1–9, Oct. 2024, doi: 10.1063/5.0234677.

A. H. Bagdadee, M. S. Rahman, I. Al Mamoon, D. A. Dewi, A. K. M. Muzahidul Islam, and L. Zhang, “Empowering smart homes by IoT-driven hybrid renewable energy integration for enhanced efficiency,” Sci. Rep., vol. 15, no. 1, p. 41491, 2025, doi: 10.1038/s41598-025-25328-2.

Y. Gulzar, F. A. Reegu, A. B. Soomro, M. S. Mir, and C. W. Onn, “Research Article Exploring the Economic Implications of IoT Adoption in Agriculture: A Cost-Benefit Study in Jazan, Saudi Arabia,” Sarhad J. Agric., vol. 41, no. 1, pp. 51–65, 2025, doi: https://dx.doi.org/10.17582/journal.sja/2025/41.1.51.65.

F. Boumehrez, A. Sahour, F. Maamri, H. Djellab, and A. Bekhouche, “IoT-enabled fuzzy logic system for aquaculture water quality management,” Proceedings of the 2025 International Conference on Advanced Systems Engineering Technology (IC_ASET). Algiers, Algeria, pp. 1–6, 2025. doi: 10.1109/IC_ASET65966.2025.11232273.

W. Bolton, Instrumentation and Control Systems, 3rd ed. Oxford: Newnes/Elsevier, 2015. doi: 10.1016/C2013-0-23299-X.

V. Venkatesh and H. Bala, “Technology acceptance model 3 and a research agenda on interventions,” Decis. Sci., vol. 39, no. 2, pp. 273–315, 2008, doi: 10.1111/j.1540-5915.2008.00192.x.

V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS Q., vol. 27, no. 3, pp. 425–478, 2003, doi: 10.2307/30036540.

J. Pretty, “Global assessment of agricultural system redesign for sustainable intensification,” Nat. Sustain., vol. 1, no. 8, pp. 441–446, 2018, doi: 10.1038/s41893-018-0114-0.

Published
2025-12-25
How to Cite
Junfithrana, A. P., Suryana, A., Saputri, U. S., Hasbullah, D., Langlangbuana, M. L., Mahamad, A. K., Utomo, W. M., Onn, C. W., & Korkmaz, H. B. (2025). IoT-VR Integrated Framework for Precision Prebiotic Dosing in Intensive Aquaculture: A Technology-Based Approach to Sustainable Fish Production. Journal of Educational Technology and Learning Creativity, 3(2). https://doi.org/10.37251/jetlc.v3i2.2497
Section
Multidisciplinary