Is Smart Farming the Future of Sustainable Agriculture? Insights from a Village-Level Innovation Adoption

  • Hermiliana Hermiliana Muhammadiyah University of Makassar
  • Gerly-Ayn Tupas Mindanao State University Tawi-Tawi College of Technology and Oceanography
  • Wanida Maksiri Phetchaburi Rajabhat University
Keywords: Agricultural Innovation, Internet of Things (IoT), Rural Development, Smart Farming, Technology Adoption

Abstract

Purpose of the study: This study aims to analyze the implementation of smart farming in Lapajung Subdistrict, Lalabata District, Soppeng Regency, and to examine how its application contributes to improving agricultural productivity in the area.

Methodology: This study employed a qualitative approach with a descriptive case study design in Lapajung Sub-District, Soppeng Regency. Data were collected through observation, interviews, and documentation involving key informants. The data were analyzed using Miles and Huberman’s interactive model, guided by Rogers’ five indicators of innovation diffusion.

Main Findings: Smart farming implementation in Lapajung Urban Village improved crop productivity, optimized water and fertilizer use, reduced pesticide dependency, and enhanced sustainability. Farmers reported time and labor savings, more accurate crop monitoring, and greater resilience to climate variability. Trial opportunities increased adoption rates. Despite challenges such as high initial costs and technical complexity, observable benefits encouraged wider acceptance and demonstrated strong alignment with local agricultural values.

Novelty/Originality of this study: This study introduces an integrated educational approach to smart farming adoption in rural Indonesia by using Everett Rogers’ diffusion of innovation theory as a pedagogical framework. It contributes to the field of educational agricultural technology by highlighting how structured training, local compatibility, and observable outcomes can accelerate the understanding and acceptance of smart farming among farmers. This research uniquely bridges technological innovation with community-based agricultural education, promoting sustainable farming literacy.

References

S. F. Imanuella, A. Idris, and N. Kamaruddin, “Social entrepreneurship and rural development in post-independence Indonesia,” Soc. Enterp. J., vol. 21, no. 1, pp. 46–66, 2024, doi: 10.1108/SEJ-12-2023-0155.

Y. J. Amuda and S. Alabdulrahman, “Cocoa, palm tree, and cassava plantations among smallholder farmers: toward policy and technological efficiencies for sustainable socio-economic development in Southern Nigeria,” Sustain., vol. 16, no. 2, pp. 1–23, 2024, doi: 10.3390/su16020477.

S. Maulu, O. J. Hasimuna, B. Mutale, J. Mphande, and E. Siankwilimba, “Enhancing the role of rural agricultural extension programs in poverty alleviation: A review,” Cogent Food Agric., vol. 7, no. 1, 2021, doi: 10.1080/23311932.2021.1886663.

M. N. Mokgomo, C. Chagwiza, and P. F. Tshilowa, “Impact of government agricultural development support on agricultural income, production and food security of beneficiary small-scale farmers in South Africa,” Agric., vol. 12, no. 11, 2022, doi: 10.3390/agriculture12111760.

H. Singh, N. Halder, B. Singh, J. Singh, S. Sharma, and Y. Shacham-Diamand, “Smart farming revolution: Portable and real-time soil nitrogen and phosphorus monitoring for sustainable agriculture,” Sensors, vol. 23, no. 13, 2023, doi: 10.3390/s23135914.

E. Said Mohamed, A. A. Belal, S. Kotb Abd-Elmabod, M. A. El-Shirbeny, A. Gad, and M. B. Zahran, “Smart farming for improving agricultural management,” Egypt. J. Remote Sens. Sp. Sci., vol. 24, no. 3, pp. 971–981, 2021, doi: 10.1016/j.ejrs.2021.08.007.

I. Batra, C. Sharma, A. Malik, S. Sharma, M. S. Kaswan, and J. A. Garza-Reyes, “Industrial revolution and smart farming: a critical analysis of research components in Industry 4.0,” TQM J., vol. ahead-of-p, no. ahead-of-print, Jan. 2024, doi: 10.1108/TQM-10-2023-0317.

V. Sharma, A. K. Tripathi, and H. Mittal, “Technological revolutions in smart farming: Current trends, challenges & future directions,” Comput. Electron. Agric., vol. 201, p. 107217, 2022, doi: 10.1016/j.compag.2022.107217.

K. Paul et al., “Viable smart sensors and their application in data driven agriculture,” Comput. Electron. Agric., vol. 198, p. 107096, 2022, doi: 10.1016/j.compag.2022.107096.

S. Singh, K. S. Reddy, M. K. Bhowmick, A. K. Srivastava, S. Kumar, and P. Peramaiyan, “Accelerating Climate Adaptation with Big Data Analytics and ICTs BT - Advances in Agri-Food Systems: Volume I,” H. Pathak, W. S. Lakra, A. Gopalakrishnan, and K. C. Bansal, Eds., Singapore: Springer Nature Singapore, 2025, pp. 179–196. doi: 10.1007/978-981-96-0759-4_10.

T. Ayoub Shaikh, T. Rasool, and F. Rasheed Lone, “Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming,” Comput. Electron. Agric., vol. 198, p. 107119, 2022, doi: 10.1016/j.compag.2022.107119.

C. El Hachimi, S. Belaqziz, S. Khabba, B. Sebbar, D. Dhiba, and A. Chehbouni, “Smart weather data management based on artificial intelligence and big data analytics for precision agriculture,” Agric., vol. 13, no. 1, pp. 1–22, 2023, doi: 10.3390/agriculture13010095.

K. Hermans and R. McLeman, “Climate change, drought, land degradation and migration: exploring the linkages,” Curr. Opin. Environ. Sustain., vol. 50, pp. 236–244, 2021, doi: 10.1016/j.cosust.2021.04.013.

T. T. Nguyen, U. Grote, F. Neubacher, D. B. Rahut, M. H. Do, and G. P. Paudel, “Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South,” Curr. Opin. Environ. Sustain., vol. 63, p. 101322, 2023, doi: 10.1016/j.cosust.2023.101322.

T. Dibbern, L. A. S. Romani, and S. M. F. S. Massruhá, “Main drivers and barriers to the adoption of digital agriculture technologies,” Smart Agric. Technol., vol. 8, no. December 2023, 2024, doi: 10.1016/j.atech.2024.100459.

Z. Wu, B. Wang, M. Li, Y. Tian, Y. Quan, and J. Liu, “Simulation of forest fire spread based on artificial intelligence,” Ecol. Indic., vol. 136, no. December 2021, p. 108653, 2022, doi: 10.1016/j.ecolind.2022.108653.

A. Arslan, I. Golgeci, Z. Khan, O. Al-Tabbaa, and P. Hurmelinna-Laukkanen, “Adaptive learning in cross-sector collaboration during global emergency: conceptual insights in the context of COVID-19 pandemic,” Multinatl. Bus. Rev., vol. 29, no. 1, pp. 21–42, 2021, doi: 10.1108/MBR-07-2020-0153.

M. Wu and M. N. I. Sarker, “Assessment of multiple subjects’ synergetic governance in vocational education,” Front. Psychol., vol. 13, Sep. 2022, doi: 10.3389/fpsyg.2022.947665.

Y. C. Wen, S. Wen, L. Hsu, and S. Chi, “Auxiliary reference samples for extrapolating spectral reflectance from camera RGB signals,” Sensors, vol. 22, no. 13, pp. 1–24, 2022, doi: 10.3390/s22134923.

S. Viazzi et al., “Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows,” Comput. Electron. Agric., vol. 100, pp. 139–147, 2014, doi: 10.1016/j.compag.2013.11.005.

M. Masi, M. De Rosa, Y. Vecchio, L. Bartoli, and F. Adinolfi, “The long way to innovation adoption: insights from precision agriculture,” Agric. Food Econ., vol. 10, no. 1, 2022, doi: 10.1186/s40100-022-00236-5.

G. N. Curry et al., “Disruptive innovation in agriculture: socio-cultural factors in technology adoption in the developing world,” J. Rural Stud., vol. 88, pp. 422–431, 2021, doi: 10.1016/j.jrurstud.2021.07.022.

J. Wang, S. Zhang, and L. Zhang, “Hog farming adoption choices using the unified theory of acceptance and use of technology model: perspectives from China’s new agricultural managers,” Agric., vol. 13, no. 11, 2023, doi: 10.3390/agriculture13112067.

E. M. B. M. Karunathilake, A. T. Le, S. Heo, Y. S. Chung, and S. Mansoor, “The path to smart farming: ionnovations and opportunities in precision agriculture,” Agric., vol. 13, no. 8, pp. 1–26, 2023, doi: 10.3390/agriculture13081593.

E. M. Rogers, “Diffusion of Innovations - Chapter 4,” 1995. [Online]. Available: http://ocw.metu.edu.tr/file.php/118/Week9/rogers-doi-ch5.pdf

E. Navarro, N. Costa, and A. Pereira, “A systematic review of IoT solutions for smart farming,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–29, 2020, doi: 10.3390/s20154231.

C. Greco et al., “Smart farming technologies for sustainable agriculture: a case study of a mediterranean aromatic farm,” Agric., vol. 15, no. 8, 2025, doi: 10.3390/agriculture15080810.

R. S. Velazquez-Gonzalez, A. L. Garcia-Garcia, E. Ventura-Zapata, J. D. O. Barceinas-Sanchez, and J. C. Sosa-Savedra, “A review on hydroponics and the technologies associated for medium-and small-scale operations,” Agric., vol. 12, no. 5, pp. 1–21, 2022, doi: 10.3390/agriculture12050646.

S. F. MOSELEY, “Everett Rogers’ diffusion of innovations theory: its utility and value in public health,” J. Health Commun., vol. 9, no. sup1, pp. 149–151, Jan. 2004, doi: 10.1080/10810730490271601.

P. Khongpeim and T. Prangkratok, “Situation and trends in the application of internet of things (IoT) integration for smart plant farms in Thailand,” J. Ind. Educ., vol. 24, no. 1, p. 2022, Apr. 2025, doi: 10.55003/JIE.24103.

S. Srivetbodee and B. Igel, “Digital technology adoption in agriculture: success factors, obstacles and impact on corporate social responsibility performance in Thailand’s smart farming projects,” Thammasat Rev., vol. 24, no. 2, pp. 149–170, 2021, doi: 10.14456/tureview.2021.22.

C. Takagi, S. H. Purnomo, and M.-K. Kim, “Adopting Smart Agriculture among organic farmers in Taiwan,” Asian J. Technol. Innov., vol. 29, pp. 1–16, Jul. 2020, doi: 10.1080/19761597.2020.1797514.

N. Gumbi, L. Gumbi, and H. Twinomurinzi, “Towards sustainable digital agriculture for smallholder farmers: a systematic literature review,” Sustainability, vol. 15, no. 16, p. 12530, Aug. 2023, doi: 10.3390/su151612530.

A. Agussabti, R. Rahmaddiansyah, A. H. Hamid, Z. Zakaria, A. A. Munawar, and B. Abu Bakar, “Farmers’ perspectives on the adoption of smart farming technology to support food farming in Aceh Province, Indonesia,” vol. 7, no. 1, pp. 857–870, 2022, doi: doi:10.1515/opag-2022-0145.

S. Chernbumroong, P. Sureephong, P. Suebsombut, and A. Sekhari, “Training evaluation in a smart farm using Kirkpatrick model: a case study of Chiang Mai,” in 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), IEEE, Jan. 2022, pp. 463–466. doi: 10.1109/ECTIDAMTNCON53731.2022.9720376.

D. E. Dewi, P. N. A. Cahyani, and L. R. Megawati, Increasing adoption of the internet of things in Indonesian agriculture based on a review of Everett Rogers’ aiffusion theory of innovation, vol. 1, no. Un 2019. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-144-9_29.

E. M. Rogers, Diffusion of innovations, 5th edn Tampa. 2003.

J. H. Kuo, C. McManus, and J. A. Lee, “Analyzing the adoption of radiofrequency ablation of thyroid nodules using the diffusion of innovations theory: understanding where we are in the United States?,” Ultrason. (Seoul, Korea), vol. 41, no. 1, pp. 25–33, Jan. 2022, doi: 10.14366/usg.21117.

D. R. Call and D. R. Herber, “Applicability of the diffusion of innovation theory to accelerate model-based systems engineering adoption,” Syst. Eng., vol. 25, no. 6, pp. 574–583, 2022, doi: 10.1002/sys.21638.

A. Jabbari, A. Humayed, F. A. Reegu, M. Uddin, Y. Gulzar, and M. Majid, “Smart farming revolution: farmer’s perception and adoption of smart IoT technologies for crop health monitoring and yield prediction in Jizan, Saudi Arabia,” Sustainability, vol. 15, no. 19, p. 14541, Oct. 2023, doi: 10.3390/su151914541.

K. Dixit, K. Aashish, and A. Kumar Dwivedi, “Antecedents of smart farming adoption to mitigate the digital divide – extended innovation diffusion model,” Technol. Soc., vol. 75, p. 102348, Nov. 2023, doi: 10.1016/j.techsoc.2023.102348.

N. I. Denashurya, Nurliza, E. Dolorosa, D. Kurniati, and D. Suswati, “Overcoming barriers to ISPO certification: analyzing the drivers of sustainable agricultural adoption among farmers,” Sustainability, vol. 15, no. 23, p. 16507, Dec. 2023, doi: 10.3390/su152316507.

Published
2025-06-14
How to Cite
Hermiliana, H., Tupas, G.-A., & Maksiri, W. (2025). Is Smart Farming the Future of Sustainable Agriculture? Insights from a Village-Level Innovation Adoption . Journal of Educational Technology and Learning Creativity, 3(1), 175-184. https://doi.org/10.37251/jetlc.v3i1.1849
Section
Articles