A Numerical Study of Bracketing Root-Finding Methods for Nonlinear Equations: Applications to Break-Even Point Determination
Abstract
Purpose of the study: The purpose of this study is to compare the results of the Bisection Method, the Regula Falsi Method and the Secant Method in completing Break Even analysis.
Methodology: The research method used is an applied method. The research location is the library of Alauddin State Islamic University, Makassar. The research procedure used by the researcher is to compare the results of the Bisection Method, the Regula Falsi Method, and the Secant Method in solving Break-Even Analysis.
Main Findings: The results show that the secant method is an efficient method for conducting break-even analysis. This is demonstrated by the error value obtained at the end of the iteration process, which shows the smallest error value. In other experiments, the secant method also showed fewer iterations than other methods.
Novelty/Originality of this study: This research can be used as reference material for readers who want to compare the bisection method and the falsi-regularization method. Furthermore, the researchers use the results as a means of evaluating the ability to apply theories in numerical courses.
References
C. Cattani, “Nonlinear Analysis and Computer Simulations : New Horizons in Theory and Applications,” Nonlinear Anal. Comput. Simulations, vol. 1, no. 1, pp. 1–6, 2026.
D. Wang, M. Ha, and M. Zhao, “The intelligent critic framework for advanced optimal control,” Artif. Intell. Rev., vol. 55, no. 1, pp. 1–22, Jan. 2022, doi: 10.1007/s10462-021-10118-9.
J. Chessari, R. Kawai, Y. Shinozaki, and T. Yamada, “Numerical methods for backward stochastic differential equations: A survey,” Probab. Surv., vol. 20, pp. 486–567, Jan. 2023, doi: 10.1214/23-PS18.
R. A. Alharbey, W. R. Alrefae, H. Malaikah, E. Tag-Eldin, and S. A. El-Tantawy, “Novel Approximate Analytical Solutions to the Nonplanar Modified Kawahara Equation and Modeling Nonlinear Structures in Electronegative Plasmas,” Symmetry (Basel)., vol. 15, no. 1, p. 97, Dec. 2022, doi: 10.3390/sym15010097.
F. Mirzaee, S. Naserifar, and E. Solhi, “Accurate and stable numerical method based on the Floater-Hormann interpolation for stochastic Itô-Volterra integral equations,” Numer. Algorithms, vol. 94, no. 1, pp. 275–292, Sep. 2023, doi: 10.1007/s11075-023-01500-5.
H. M. Srivastava, W. Adel, M. Izadi, and A. A. El-Sayed, “Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials,” Fractal Fract., vol. 7, no. 4, p. 301, Mar. 2023, doi: 10.3390/fractalfract7040301.
B. M. Faraj, S. K. Rahman, D. A. Mohammed, B. M. Hussein, B. A. Salam, and K. R. Mohammed, “An Improved Bracketing Method For Numerical Solution Of Nonlinear Equations Based On Ridders Method,” Matrix Sci. Math., vol. 6, no. 2, pp. 30–33, 2022, doi: 10.26480/msmk.02.2022.30.33.
M. I. Soomro, Z. A. Kalhoro, A. W. Shaikh, S. Jamali, and Owais Ali, “Modified Bracketing Iterative Method for Solving Nonlinear Equations,” VFAST Trans. Math., vol. 12, no. 1, pp. 105–120, Apr. 2024, doi: 10.21015/vtm.v12i1.1761.
E. Badr, H. Attiya, and A. El Ghamry, “Novel hybrid algorithms for root determining using advantages of open methods and bracketing methods,” Alexandria Eng. J., vol. 61, no. 12, pp. 11579–11588, 2022, doi: 10.1016/j.aej.2022.05.007.
M. I. Soomro, Z. A. Kalhoro, A. W. Shaikh, S. Jamali, and Owais Ali, “Modified Bracketing Iterative Method for Solving Nonlinear Equations,” VFAST Trans. Math., vol. 12, no. 1, pp. 105–120, 2024, doi: 10.21015/vtm.v12i1.1761.
Inderjeet and Rashmi Bhardwaj, “Numerical Simulation of Nonlinear Equations by Modified Bisection and Regula Falsi Method,” Proc. Pakistan Acad. Sci. A. Phys. Comput. Sci., vol. 62, no. 1, pp. 11–19, Mar. 2025, doi: 10.53560/PPASA(62-1)873.
Inderjeet and R. Bhardwaj, “An integrated approach of the numerical simulation of nonlinear equations by modified bisection and Regula Falsi method,” J. Interdiscip. Math., vol. 28, no. 4, pp. 1553–1571, 2025, doi: 10.47974/JIM-2136.
G. Gulshan, H. Budak, R. Hussain, and A. Sadiq, “Generalization of the bisection method and its applications in nonlinear equations,” Adv. Contin. Discret. Model., vol. 2023, no. 1, p. 18, Mar. 2023, doi: 10.1186/s13662-023-03765-5.
M. R. Bhatt, H. L. Dhungana, and G. R. Dhakal, “A Numerical Perspective on Solving Non-Linear Equations: Newton Vs. Bisection,” Acad. J. Math. Educ., vol. 7, no. 1, pp. 74–80, 2024, doi: 10.3126/ajme.v7i1.81460.
M. I. F. Faizal, T. A. Azizi, R. Jaafar, N. S. K. Abdullah, Z. Mohd Yusof, and N. A. Hassanuddin, “A comparative study of the Regula Falsi method, Newton’s method, and the steepest descent method for solving nonlinear equations,” Data Anal. Appl. Math., vol. 6, no. 2, pp. 10–15, 2025, doi: 10.15282/daam.v6i2.13044.
S. Kaur and S. K. Sharma, “An Efficient Iterative Methods for Solving Transcendental Equations,” 2023, pp. 191–203. doi: 10.1007/978-981-99-2468-4_15.
G. Venkat Narayanan, “A Comparative Study Of Numerical Methods For Solving Nonlinear Equations,” Int. J. Appl. Math., vol. 38, no. 5s, pp. 898–912, Oct. 2025, doi: 10.12732/ijam.v38i5s.358.
N. K. Murugaiyan, K. Chandrasekaran, M. M. Devapitchai, and T. Senjyu, “Parameter Estimation of Three-Diode Photovoltaic Model Using Reinforced Learning-Based Parrot Optimizer with an Adaptive Secant Method,” Sustain., vol. 16, no. 23, pp. 1–34, 2024, doi: 10.3390/su162310603.
F. Khan, “Optimization Techniques in Applied Mathematics: From Physics Simulations to Real-World Problems,” Front. Appl. Phys. Math., vol. 01, no. 02, pp. 97–109, 2024.
R. Rishabh and K. N. Das, “A Critical Review on Metaheuristic Algorithms based Multi-Criteria Decision-Making Approaches and Applications,” Arch. Comput. Methods Eng., vol. 32, no. 2, pp. 963–993, Mar. 2025, doi: 10.1007/s11831-024-10165-9.
Z. Gubio, L. Olumide Mustapha, S. E. Agbi, Z. D. Gubio, L. O. Mustapha, and S. E. Agbi, “The effect of break-even-point analysis in decision making in some selected block industries within Kaduna Metropolis,” Quest Journals J. Res. Bus. Manag., vol. 10, no. 5, pp. 22–32, 2022, [Online]. Available: www.questjournals.org
S. Zahirović, J. Okičić, and A. Gadžo, “Generalization of Linear Models for Multiproduct Break-Even Analysis With Constant Ratios,” Eurasian J. Bus. Manag., vol. 12, no. 1, pp. 1–14, 2025, doi: 10.15604/ejbm.2024.12.01.001.
A. Hasanudin, “Calculation of loan amount when cooperatives do not make profits with non-linear equation method using secant and its implementation With MATLAB,” J. Mercumatika J. Penelit. Mat. dan Pendidik. Mat., vol. 8, no. 1, p. 18, 2023.
C. Wang, D. Yang, J. Lyu, Y. Dai, C. Zhuo, and Q. Chen, “On Model Order Reduction and Exponential Integrator for Transient Circuit Simulation,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 43, no. 1, pp. 328–339, 2024, doi: 10.1109/TCAD.2023.3309734.
J. Syrůček, L. Bartoň, and J. Burdych, “Break-even point analysis for milk production - Selected EU countries,” Agric. Econ. (Zemědělská Ekon., vol. 68, no. 6, pp. 199–206, Jun. 2022, doi: 10.17221/40/2022-AGRICECON.
A.-M. B. Oluwayemisi, A. I. Felix, F. T. Olajumoke, A. S. Ayodeji, and S. S. Ojeme, “Break-Even Analysis and Decision Making: An Empirical Investigation of Selected Listed Non-Financial Firms in Nigeria,” Euro Econ., vol. 2, no. 1, pp. 7–15, 2022.
N. Nisha and M. Abouagwa, “Mathematics: The Backbone of Smart Business Decisions,” in Marketing Strategies for Total Quality Management in Hospitality Excellence, IGI Global Scientific Publishing, 2025, pp. 187–210. doi: 10.4018/979-8-3693-8608-8.ch009.
D. Botticelli, K. A. Apaza Alccayhuaman, S. P. Xavier, E. R. Silva, Y. Nakajima, and S. Baba, “From Break-Even Point to Dynamic Regenerative Balance: A Conceptual and Quantitative Framework Based on Preclinical Rabbit Sinus Lift Data,” Dent. J., vol. 13, no. 10, pp. 1–17, 2025, doi: 10.3390/dj13100469.
S. P. Hong, “Different Numerical Techniques, Modeling and Simulation in Solving Complex Problems,” J. Mach. Comput., vol. 3, no. 2, pp. 58–68, 2023, doi: 10.53759/7669/jmc202303007.
M. Ozkan-Okay et al., “A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and Machine Learning Techniques on Cyber Security Solutions,” IEEE Access, vol. 12, no. November 2023, pp. 12229–12256, 2024, doi: 10.1109/ACCESS.2024.3355547.
A. Naseem, M. A. Rehman, and T. Abdeljawad, “A Novel Root-Finding Algorithm with Engineering Applications and its Dynamics via Computer Technology,” IEEE Access, vol. 10, no. 1, pp. 19677–19684, 2022, doi: 10.1109/ACCESS.2022.3150775.
M. Pakdemirli, “On Functional Series With Applications To Root Finding Techniques And To Ordinary Differential Equations,” Matrix Sci. Math., vol. 8, no. 2, pp. 72–76, 2024, doi: 10.26480/msmk.02.2024.
W. Zhao, G. Yang, M. Jiang, L. Meng, and M. Wang, “A Survey of Comprehensive Evaluation Methods,” in 2024 11th International Conference on Dependable Systems and Their Applications (DSA), IEEE, Nov. 2024, pp. 260–268. doi: 10.1109/DSA63982.2024.00042.
J. Hou, T. Gao, Y. Yang, X. Wang, Y. Yang, and S. Meng, “Battery inconsistency evaluation based on hierarchical weight fusion and fuzzy comprehensive evaluation method,” J. Energy Storage, vol. 84, p. 110878, Apr. 2024, doi: 10.1016/j.est.2024.110878.
N. J. Fox and P. Alldred, “Applied Research, Diffractive Methodology, and the Research-Assemblage: Challenges and Opportunities,” Sociol. Res. Online, vol. 28, no. 1, pp. 93–109, 2023, doi: 10.1177/13607804211029978.
R. Bell and V. Warren, “Illuminating a methodological pathway for doctor of business administration researchers: Utilizing case studies and mixed methods for applied research,” Soc. Sci. Humanit. Open, vol. 7, no. 1, p. 100391, 2023, doi: 10.1016/j.ssaho.2022.100391.
H. J. Hamayd, A. F. A. Ali, S. M. Khalaf, and M. J. Hameed, “Analysis and Optimization of Iterative Methods for Solving Nonlinear Equations,” Int. J. Appl. Math., vol. 38, no. 8s, pp. 178–199, 2025, doi: 10.12732/ijam.v38i8s.555.
A. Y. Almansour and B. Y. Almansour, “Optimizing Break-Even Point: A New Methodology for Identifying Critical Components and Managing Financial Stability,” Montenegrin J. Econ., vol. 20, no. 4, pp. 51–63, 2024, [Online]. Available: http://www.mnje.com/sites/mnje.com/files/47-54_todorovic.pdf
P. Candio and E. Frew, “How much behaviour change is required for the investment in cycling infrastructure to be sustainable? A break-even analysis,” PLoS One, vol. 18, no. 4 April, pp. 1–14, 2023, doi: 10.1371/journal.pone.0284634.
I. A. R. Moghrabi, “A new secant-like quasi-Newton method for unconstrained optimisation,” Int. J. Oper. Res., vol. 49, no. 1, pp. 65–84, 2024, doi: 10.1504/IJOR.2024.136006.
P. Berzi, “Convergence and Stability Improvement of Quasi-Newton Methods by Full-Rank Update of the Jacobian Approximates,” AppliedMath, vol. 4, no. 1, pp. 143–181, Jan. 2024, doi: 10.3390/appliedmath4010008.
I. Imbayah, M. Khaleel, and Z. Yusupov, “Optimization of Hybrid Renewable Energy Systems : Classical Optimization Methods , Artificial Intelligence , Recent Trend , and Software Tools,” Int. J. Electr. Eng. Sustain., vol. 3, no. 4, pp. 47–69, 2025.
B. Paradowski, J. Wątróbski, and W. Sałabun, “Novel coefficients for improved robustness in multi-criteria decision analysis,” Artif. Intell. Rev., vol. 58, no. 10, p. 298, Jul. 2025, doi: 10.1007/s10462-025-11307-6.
A. Czerwinski, “Mathematics Serving Economics: A Historical Review of Mathematical Methods in Economics,” Symmetry (Basel)., vol. 16, no. 10, p. 1271, Sep. 2024, doi: 10.3390/sym16101271.
M. Dyvak, A. Melnyk, A. Rot, M. Hernes, and A. Pukas, “Ontology of Mathematical Modeling Based on Interval Data,” Complexity, vol. 2022, no. 1, Jan. 2022, doi: 10.1155/2022/8062969.
Copyright (c) 2025 Ismuniyarto Ismuniyarto, David Pinheiro, El Hadji Lamine Sokhna

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and acknowledge that the Interval: Indonesian Journal of Mathematical Education is the first publisher licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.



.png)
.png)












