Numerical Analysis of Flow Through Venturimeter with Variation of Neck Size to Determine Velocity Coefficient and Pressure Drop

  • Zakaria Gaber Hanawy Beshay Assiut University
  • Sokunthea Sin Phnom Penh Teacher Education College
  • Waleed A. Raja Syracuse University
Keywords: Numerical Simulation, Pressure Drop, Reynolds Number, Velocity Coefficient, Venturimeter

Abstract

Purpose of the study: This study aims to analyze the effect of variations in the size of the venturimeter neck on the velocity coefficient and pressure drop using a numerical simulation method. 

Methodology: The method used in this study is numerical simulation using SolidWorks 2014 software. The simulated venturimeter model has a neck length variation of 20 mm and 30 mm, with a throat diameter of 10 mm. The fluid used is water with a temperature of 25°C, and the simulation is carried out in the Reynolds number (Re) range of 1000 to 5000.

Main Findings: The results of the study showed that the greater the velocity of the incoming fluid, the Reynolds number, flow rate, and pressure drop also increased. In addition, the difference in the length of the venturimeter neck affects the pressure drop, where the venturimeter with a longer neck experiences a greater pressure drop due to the longer duration of the fluid flow. The resulting velocity coefficient is also influenced by the velocity of the incoming fluid, where the higher the velocity, the greater the flow rate value.

Novelty/Originality of this study: The novelty in this research lies in the numerical approach in analyzing the relationship between the venturimeter neck size and the velocity coefficient and pressure drop. This approach allows faster and more efficient calculations compared to conventional experimental methods, thus contributing to the development of more accurate and applicable fluid flow measurement techniques.

References

R. Hilala, L. A. R. Laliyo, J. La Kilo, J. S. Tangio, E. Mohamad, and M. Sihaloho, “Measuring students’ scientific argumentation skills in explaining phenomena related to acid-base concepts,” J. Pendidik. Sains Indones., vol. 11, no. 2, pp. 360–378, 2023, doi: 10.24815/jpsi.v11i2.27822.

A. B. T. Penzlin, W. Kley, and R. P. Nelson, “Parking planets in circumbinary discs,” Astron. Astrophys., vol. 645, p. A68, 2021, doi: 10.1051/0004-6361/202039319.

M. Muliana, H. Nufus, N. Nuraina, N. Mahyuni, and A. Husna, “Developing numeracy module based on local culture in Indonesia,” J. Elem., vol. 9, no. 1, pp. 168–182, 2023, doi: 10.29408/jel.v9i1.6883.

J. Rodríguez-Arce, E. Vázquez-Cano, J. P. Cobá Juárez-Pegueros, and S. González-García, “Comparison of learning content representations to improve L2 vocabulary acquisition using m-learning,” SAGE Open, vol. 13, no. 4, pp. 1–15, 2023, doi: 10.1177/21582440231216819.

A. U. H. Prabu Wisnu Puji Wibowo, Leli Indriyani, Muhammad Hanif Abdurrahman, “Menelaah para oknum yang tidak bijak dalam menggunakan media sosial atau cyberspace,” Kult. J. Ilmu Hukum, Sos. dan Hum., vol. 1, no. 5, pp. 320–330, 2023, doi: 10.572349/kultura.v1i5.565.

B. Sun, C. E. Loh, and Y. Nie, “The COVID-19 school closure effect on students’ print and digital leisure reading,” Comput. Educ. Open, vol. 2, p. 100033, 2021, doi: 10.1016/j.caeo.2021.100033.

Asmayawati, Yufiarti, and E. Yetti, “Pedagogical innovation and curricular adaptation in enhancing digital literacy: A local wisdom approach for sustainable development in Indonesia context,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 1, p. 100233, 2024, doi: 10.1016/j.joitmc.2024.100233.

Y. Su et al., “Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: A review,” Nanoscale Res. Lett., vol. 15, no. 1, 2020, doi: 10.1186/s11671-020-03428-4.

Y.-D. Tsai, D. Farnocchia, M. Micheli, S. Vagnozzi, and L. Visinelli, “Constraints on fifth forces and ultralight dark matter from OSIRIS-REx target asteroid Bennu,” Commun. Phys., vol. 7, no. 1, pp. 1–7, 2023, doi: 10.1038/s42005-024-01779-3.

H. R. Ganesha and P. S. Aithal, “How to choose an appropriate research data collection method and method choice among various research data collection methods and method choices during ph.d. program in India?,” Int. J. Manag. Technol. Soc. Sci., vol. 7, no. 2, pp. 455–489, 2022, doi: 10.47992/ijmts.2581.6012.0233.

R. Pečenko, T. Hozjan, and S. Huč, “A new numerical model for analysing timber-concrete composite beams under fire conditions,” Structures, vol. 75, no. January, p. 108575, 2025, doi: 10.1016/j.istruc.2025.108575.

K. Parach, B. Jafari, and K. Hosseinzadeh, “Numerical analysis of integrated photovoltaic thermal systems utilizing nanoparticles with phase change material and fin attachments,” Int. J. Thermofluids, vol. 27, no. April, p. 101210, 2025, doi: 10.1016/j.ijft.2025.101210.

K. Mardiana, A. Mickovska-Raleva, and J. M. Zakari, “A comparative study: Attitudes and thinking patterns students in citizenship education,” J. Soc. Knowl. Educ., vol. 5, no. 3, pp. 106–112, 2024, doi: 10.37251/jske.v5i3.1072.

L. Nurnaningsih and G. Prahmana, Rully Charitas Indra Prahmana, Wahid Yunianto, “The integration of Ethno-RME in MatCityMap application to support students’ learning of system of linear equations: A case of Mangkujo Math Trail,” J. Honai …, vol. 7, no. April, pp. 155–176, 2024, doi: 10.30862/jhm.v7i1.599.

A. SHEHENAZ ADAM, “Exploring ethnomathematics in the Maldives: Counting and measuring,” Maldives Natl. J. Res., vol. 8, no. 2, pp. 7–30, 2020, doi: 10.62338/epe8ay39.

H. V. Saphira, “Integrating Local Wisdom-Based Learning To Preparing The Pancasila Students’ Profile, Yes or No?,” Int. J. Curr. Educ. Res., vol. 1, no. 1, pp. 18–35, 2022, doi: 10.53621/ijocer.v1i1.136.

M. S. Hsu, C. L. Yeh, S. J. Cheng, and C. P. Lin, “Integrating digital technologies in dental technician education: A comparative study of national examination in Asian countries,” J. Dent. Sci., vol. 20, no. 1, pp. 28–35, 2024, doi: 10.1016/j.jds.2024.10.017.

M. Moghadas, A. Fekete, A. Rajabifard, and T. Kötter, “The wisdom of crowds for improved disaster resilience: a near-real-time analysis of crowdsourced social media data on the 2021 flood in Germany,” GeoJournal, vol. 88, no. 4, pp. 4215–4241, 2023, doi: 10.1007/s10708-023-10858-x.

D. U. Iswavigra and L. Endriani Zen, “Systematic literature review: pengaplikasian metode VIKOR dalam decision upport system,” J. Inf. dan Teknol., vol. 5, no. 3, pp. 13–19, 2023, doi: 10.60083/jidt.v5i3.379.

N. V. Antonova, Z. N. Shmeleva, and N. S. Kozulina, “Lifelong learning as the way of modern personality development in Russia on the example of higher educational institution of technical and natural-scientific profile,” J. Phys. Conf. Ser., vol. 1691, no. 1, 2020, doi: 10.1088/1742-6596/1691/1/012146.

B. Liu and J. Ji, “A tale of planet formation: From dust to planets,” Res. Astron. Astrophys., vol. 20, no. 10, 2020, doi: 10.1088/1674-4527/20/10/164.

X. Wang, D. Chen, G. Pang, S. A. Anwar, T. Ou, and M. Yang, “Effects of cumulus parameterization and land-surface hydrology schemes on tibetan plateau climate simulation during the wet season: insights from the RegCM4 model,” Clim. Dyn., vol. 57, no. 7–8, pp. 1853–1879, 2021, doi: 10.1007/s00382-021-05781-1.

R. Buhumaid et al., “Professionalism-training in undergraduate medical education in a multi-cultural, multi-ethnic setting in the Gulf Region: an exploration of reflective essays,” BMC Med. Educ., vol. 24, no. 1, pp. 1–18, 2024, doi: 10.1186/s12909-024-05103-z.

R. Angraini and F. Rakhmawati, “Ethnomathematics Exploration of Fish Trader Activities in The Traditional Market of Punggulan Village, Asahan Regency,” Indones. J. Sci. Math. Educ., vol. 6, no. 2, pp. 213–226, 2023, doi: 10.24042/ijsme.v6i2.17182.

K. Aliyi Koroche, “Numerical solution of first order ordinary differential equation by using runge-kutta method,” Int. J. Syst. Sci. Appl. Math., vol. 6, no. 1, p. 1, 2021, doi: 10.11648/j.ijssam.20210601.11.

E. Fiandrini et al., “Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA,” Phys. Rev. D, vol. 104, no. 2, p. 23012, 2021, doi: 10.1103/PhysRevD.104.023012.

J. W. Lee, K. J. Jung, and Y. J. Kim, “Numerical analysis on performance of induced gas flotation machine using MUSIG model,” Eng. Appl. Comput. Fluid Mech., vol. 14, no. 1, pp. 778–789, 2020, doi: 10.1080/19942060.2020.1771426.

J. Bakunowicz and T. Kopecki, “Global analysis of the aircraft structure and its application to the preliminary design stage,” Aviation, vol. 9, no. 3, pp. 29–35, 2005, doi: 10.1080/16487788.2005.9635908.

P. A. Akimov, M. L. Mozgaleva, and T. B. Kaytukov, “Numerical solution of the problem of beam analysis with the use of b-spline finite element method,” Int. J. Comput. Civ. Struct. Eng., vol. 16, no. 3, pp. 12–22, 2020, doi: 10.22337/2587-9618-2020-16-3-12-22.

S. A. Hemmerling et al., “Elevating local knowledge through participatory modeling: active community engagement in restoration planning in coastal Louisiana,” J. Geogr. Syst., vol. 22, no. 2, pp. 241–266, 2020, doi: 10.1007/s10109-019-00313-2.

M. Maswar, “Analisis statistik deskriptif nilai uas ekonomitrika mahasiswa dengan program spss 23 & eviews 8.1,” J. Pendidik. Islam Indones., vol. 1, no. 2, pp. 273–292, 2017, doi: 10.35316/jpii.v1i2.54.

I. Hacking, “Scoping studies: advancing the methodology,” Represent. Interv., pp. 1–18, 2012, doi: 10.1017/cbo9780511814563.003.

M. Carmona, J. Llain, J. Sandoval, L. Beltrán, D. Acosta, and V. Pugliese, “Numerical analysis of the combustion in a micromix-type burner operating with hydrogen-natural gas blends,” Appl. Therm. Eng., vol. 272, no. April, pp. 30–31, 2025, doi: 10.1016/j.applthermaleng.2025.126336.

J. Zhang, L. Zhang, B. Zhang, N. Zhou, L. Lei, and B. Li, “Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes,” Case Stud. Therm. Eng., vol. 64, no. November, p. 105521, 2024, doi: 10.1016/j.csite.2024.105521.

Z. Huang et al., “Numerical analysis of asymmetric biomimetic flow field structure design for vanadium redox flow battery,” Futur. Batter., vol. 5, no. November 2024, p. 100017, 2025, doi: 10.1016/j.fub.2024.100017.

F. Ullah and M. B. Ashraf, “Numerical heat transfer analysis of Carreau nanofluid flow over curved stretched surface with nonlinear effects and viscous dissipation,” Int. J. Thermofluids, vol. 24, no. October, 2024, doi: 10.1016/j.ijft.2024.100914.

Y. Tu, H. Lin, M. Chen, Z. Zhang, W. Cai, and Z. Zhu, “Design and numerical analysis of a Y-shaped flow channel for enhanced hydrogen production in solid oxide electrolysis cells,” Int. J. Electrochem. Sci. , vol. 19, no. 11, p. 100806, 2024, doi: 10.1016/j.ijoes.2024.100806.

L. O. Aselebe et al., “Numerical analysis of Au/Blood aggregate nanofluid flow enclosed under the influence of magnetic field and thermal radiation,” Results Mater., vol. 24, no. August, p. 100631, 2024, doi: 10.1016/j.rinma.2024.100631.

D. J. Jasim, M. sabah mahdi, O. S. Mahdy, A. Basem, S. H. H. Karouei, and M. Alinia-kolaei, “Hydrothermal analysis of hybrid nanofluid flow inside a shell and double coil heat exchanger; Numerical examination,” Int. J. Thermofluids, vol. 23, no. July, p. 100770, 2024, doi: 10.1016/j.ijft.2024.100770.

M. N. Fares et al., “Two-phase analysis of heat transfer of nanofluid flow in a wavy channel heat exchanger: A numerical approach,” Int. J. Thermofluids, vol. 23, no. July, p. 100786, 2024, doi: 10.1016/j.ijft.2024.100786.

F. N. M. Elwekeel and A. M. M. Abdala, “Numerical analysis of the heat transfer performance of the absorber tube of a parabolic trough solar collector using the swirling flow technique,” Case Stud. Therm. Eng., vol. 60, no. July, p. 104801, 2024, doi: 10.1016/j.csite.2024.104801.

I. Catanzaro et al., “Numerical structural analysis and flow-induced vibration study in support of the design of the EU-DEMO once-through steam generator mock-up for the STEAM experimental facility,” Fusion Eng. Des., vol. 209, no. August, pp. 1–13, 2024, doi: 10.1016/j.fusengdes.2024.114698.

C. Yang, Y. bo Tie, X. zheng Zhang, Y. feng Zhang, Z. jie Ning, and Z. liang Li, “Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan Ms 8.0 earthquake area based on numerical simulation,” China Geol., vol. 7, no. 2, pp. 248–263, 2024, doi: 10.31035/cg2023144.

M. J. Alshukri, R. F. Hamad, A. A. Eidan, and A. Al-Manea, “Convective heat transfer analysis in turbulent nanofluid flow through a rectangular channel with staggered obstacles: A numerical simulation,” Int. J. Thermofluids, vol. 23, no. July, p. 100753, 2024, doi: 10.1016/j.ijft.2024.100753.

M. Ableidinger, E. Buckwar, and H. Hinterleitner, A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics, vol. 7, no. 1. The Author(s), 2017. doi: 10.1186/s13408-017-0046-4.

M. Elshabrawy, M. A. Abdeen, and S. Beshir, “Analytic and numeric analysis for deformation of non-prismatic beams resting on elastic foundations,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 10, no. 1, 2021, doi: 10.1186/s43088-021-00144-5.

J. Saini, J. Bakshi, N. K. Panda, M. Sharma, D. Vir, and A. K. Goyal, “Cut-off points to classify numeric values of quality of life into normal, mild, moderate, and severe categories: an update for EORTC-QLQ-H&N35,” Egypt. J. Otolaryngol., vol. 40, no. 1, 2024, doi: 10.1186/s43163-024-00642-0.

M. E. Elgack, K. Al-Souqi, M. O. Hamdan, and M. Abdelgawad, “Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis,” Int. J. Thermofluids, vol. 24, no. October, p. 100921, 2024, doi: 10.1016/j.ijft.2024.100921.

C. Mistrangelo, L. Bühler, C. Courtessole, and C. Koehly, “Numerical and experimental analysis of magneto-convective flows around pipes,” Fusion Eng. Des., vol. 202, no. October 2023, 2024, doi: 10.1016/j.fusengdes.2024.114325.

A. P. Palamides and T. G. Yannopoulos, “Terminal value problem for singular ordinary differential equations: Theoretical analysis and numerical simulations of ground states,” Bound. Value Probl., vol. 2006, no. August, pp. 1–28, 2006, doi: 10.1155/bvp/2006/28719.

Y. Khodair and S. Hassiotis, “Numerical and experimental analyses of an integral bridge,” Int. J. Adv. Struct. Eng., vol. 5, no. 1, pp. 1–12, 2013, doi: 10.1186/2008-6695-5-14.

L. He, L. Yi, and P. Tang, “Numerical scheme and dynamic analysis for variable-order fractional van der Pol model of nonlinear economic cycle,” Adv. Differ. Equations, vol. 2016, no. 1, 2016, doi: 10.1186/s13662-016-0920-5.

I. Kahhale, N. J. Buser, C. R. Madan, and J. L. Hanson, “Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer,” Brain Informatics, vol. 10, no. 1, 2023, doi: 10.1186/s40708-023-00189-5.

W.-E. E. Mohamed, “Assessing the effects of different foundation base shapes on settlement and heaving in expansive clay: numerical analysis,” J. Umm Al-Qura Univ. Eng. Archit., vol. 15, no. 4, pp. 517–528, 2024, doi: 10.1007/s43995-024-00073-1.

G. Brandonisio and M. T. Naqash, “Validation of numerical results of complex seismic analysis through simple analytics,” J. Umm Al-Qura Univ. Eng. Archit., vol. 15, no. 2, pp. 93–111, 2024, doi: 10.1007/s43995-023-00045-x.

W. Wen, S. Li, A. Yan, and J. Zeng, “Numerical analysis on the time-varying temperature field distribution patterns of ballastless track steel-concrete composite box girders at ambient temperature based on field measurements,” Adv. Bridg. Eng., vol. 2, no. 1, 2021, doi: 10.1186/s43251-021-00043-w.

Y. Ge, L. Zheng, Z. Deng, and G. Fang, “Parametric design and numerical analysis of super long span upper-support thrust-bearing concrete arch bridge,” Adv. Bridg. Eng., vol. 6, no. 1, 2025, doi: 10.1186/s43251-024-00151-3.

M. Kalala, P. Kisula, I. Muheme, and L. Tartibu, “Numerical analysis of a protective coating for mining industry feed chute,” J. Eng. Appl. Sci., vol. 71, no. 1, pp. 1–16, 2024, doi: 10.1186/s44147-024-00452-4.

H. J. Kim, K. Hwang, Y. H. Yoon, and H. J. Lee, “Numerical Analysis of the Effect of Afterburning on Damage to the Concrete Structure Under Interior Explosion,” Int. J. Concr. Struct. Mater., vol. 16, no. 1, 2022, doi: 10.1186/s40069-022-00497-w.

H. Wang et al., “Numerical investigations on the performance analysis of multiple fracturing horizontal wells in enhanced geothermal system,” Geotherm. Energy, vol. 13, no. 1, 2025, doi: 10.1186/s40517-025-00338-5.

Published
2025-05-01
How to Cite
Beshay, Z. G. H., Sin, S., & Raja, W. A. (2025). Numerical Analysis of Flow Through Venturimeter with Variation of Neck Size to Determine Velocity Coefficient and Pressure Drop. Interval: Indonesian Journal of Mathematical Education, 3(1), 1-12. https://doi.org/10.37251/ijome.v3i1.1613
Section
Articles