Bacteria–Molasses Synergy in Heterotrophic Systems: A Sustainable Strategy for Catfish Survival and Water Quality Improvement

  • Muhammad Iqbal Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Zharifa Rasul Mindanao State University Tawi-Tawi College of Technology and Oceanography
Keywords: Catfish, Heterotrophic System, Water Quality Criteria

Abstract

Purpose of the study: This study aimed to evaluate the survival of catfish (Clarias gariepinus) in an intensive heterotrophic culture system, focusing on the effects of the system on fish survival, growth, and health. Furthermore, this study aimed to identify environmental factors that support successful cultivation in an intensive heterotrophic system.

Methodology: This study used 12 fiber tanks with a funnel-shaped bottom and The study used 12 fiber tanks (250 L) with a density of 20 catfish (± 50 g/tail) and four treatments: feed only, feed+molasses, feed+bacteria, and feed+molasses+bacteria (heterotrophic system), each with three replications. Survival parameters and water quality (temperature, pH, DO, ammonia, nitrite, nitrate, VSS) were measured periodically. Data were analyzed using one-way ANOVA followed by a 5% Duncan test.

Main Findings: The analysis results show that the heterotrophic system produces good catfish survival and water quality that supports the growth of catfish. The heterotrophic system is able to increase the survival of catfish in intensive cultivation by up to 80–90%, reduce the concentration of ammonia to 0.98 mg/L, nitrite to 1.06 mg/L, and nitrate, thus producing water quality that is very supportive of the success of intensive cultivation. In addition, the highest volatile suspended solid value was recorded at 0.90 mg/L in the heterotrophic system.

Novelty/Originality of this study: This research presents a new approach to intensive catfish to simultaneously improve fish survival and optimize water quality. These findings expand knowledge on nitrogen waste management and provide practical strategies for the development of sustainable aquaculture technologies.

References

H. Kartikaningsih, Yahya, D. Setijawati, and H. I. Fathoni, “The behavior of catfish traders on the food safety perspective in Malang Markets, Indonesia,” Biodiversitas, vol. 23, no. 5, pp. 2270–2275, 2022, doi: 10.13057/biodiv/d230504.

S. Supriyadi, K. I. Abdillah, and M. Primyastanto, “Risk analysis of catfish cultivation ( Pangasius hypophthalmus) business in Gondosuli Village, Gondang, Tulungagung,” IOP Conf. Ser. Earth Environ. Sci., vol. 1036, no. 1, 2022, doi: 10.1088/1755-1315/1036/1/012025.

R. Abisha, K. K. Krishnani, K. Sukhdhane, A. K. Verma, M. Brahmane, and N. K. Chadha, “Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: a review,” J. Water Clim. Chang., vol. 13, no. 7, pp. 2671–2689, 2022, doi: 10.2166/wcc.2022.045.

I. A. Bhat, M. A. Rather, I. Ahmad, I. Ahmad, I. N. Mir, and Hussna, “Impact of shifting abiotic factors in aquaculture on fish breeding and reproduction: a review,” Blue Biotechnol., vol. 2, no. 1, 2025, doi: 10.1186/s44315-025-00027-9.

H. Wang et al., “Transcriptome analysis revealed potential mechanisms of channel catfish growth advantage over blue catfish in a tank culture environment,” Front. Genet., vol. 15, no. April, pp. 1–11, 2024, doi: 10.3389/fgene.2024.1341555.

E. Gisbert et al., Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages, vol. 14, no. 1. 2022. doi: 10.1111/raq.12586.

B. Raza, Z. Zheng, and W. Yang, “A review on biofloc system technology, history, types, and future economical perceptions in aquaculture,” Animals, vol. 14, no. 10, 2024, doi: 10.3390/ani14101489.

J. Day et al., “A review of 50 years of study of hydrology, wetland dynamics, aquatic metabolism, water quality and trophic status, and nutrient biogeochemistry in the Barataria Basin, Mississippi Delta—System functioning, human impacts and restoration approaches,” Water, vol. 13, no. 5, p. 642, Feb. 2021, doi: 10.3390/w13050642.

S. P. Lall and S. J. Kaushik, “Nutrition and metabolism of minerals in fish,” Animals, vol. 11, no. 9, pp. 1–41, 2021, doi: 10.3390/ani11092711.

M. Takvam, C. M. Wood, H. Kryvi, and T. O. Nilsen, “Role of the kidneys in acid-base regulation and ammonia excretion in freshwater and seawater fish: implications for nephrocalcinosis,” Front. Physiol., vol. 14, no. June, pp. 1–18, 2023, doi: 10.3389/fphys.2023.1226068.

C. E. Boyd and C. S. Tucker, Pond Aquaculture Water Quality Management. Boston, MA: Springer US, 1998. doi: 10.1007/978-1-4615-5407-3.

A. B. Kusunur et al., “Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system,” J. Appl. Microbiol., vol. 134, no. 4, Apr. 2023, doi: 10.1093/jambio/lxad060.

S. Duan, Y. Zhang, and S. Zheng, “Heterotrophic nitrifying bacteria in wastewater biological nitrogen removal systems: A review,” Crit. Rev. Environ. Sci. Technol., vol. 52, no. 13, pp. 2302–2338, Jul. 2022, doi: 10.1080/10643389.2021.1877976.

Y. Ma et al., “Research on nitrogen transformation pathways of a thermophilic heterotrophic nitrifying bacterial consortium GW7,” Front. Microbiol., vol. 16, no. June, 2025, doi: 10.3389/fmicb.2025.1578865.

A. Chamoli, A. Bhambri, S. K. Karn, and V. Raj, “Ammonia, nitrite transformations and their fixation by different biological and chemical agents,” Chem. Ecol., vol. 40, no. 2, pp. 166–199, Feb. 2024, doi: 10.1080/02757540.2023.2300780.

C. Wang et al., “Improvement of fish production and water quality in a recirculating aquaculture pond enhanced with bacteria-microalgae association,” Aquaculture, vol. 547, p. 737420, 2022, doi: https://doi.org/10.1016/j.aquaculture.2021.737420.

G. Kaur et al., “Recent advancements in deep learning fameworks for precision fish farming opportunities, challenges, and applications,” J. Food Qual., vol. 2023, pp. 1–11, Feb. 2023, doi: 10.1155/2023/4399512.

M. Dara, P. Carbonara, C. La Corte, D. Parrinello, M. Cammarata, and M. G. Parisi, “Fish welfare in aquaculture: Physiological and immunological activities for diets, social and spatial stress on Mediterranean aqua cultured species,” Fishes, vol. 8, no. 8, 2023, doi: 10.3390/fishes8080414.

P. Lindholm‐Lehto, “Water quality monitoring in recirculating aquaculture systems,” Aquac. Fish Fish., vol. 3, no. 2, pp. 113–131, 2023, doi: 10.1002/aff2.102.

S. K. Nagothu, P. Bindu Sri, G. Anitha, S. Vincent, and O. P. Kumar, “Advancing aquaculture: fuzzy logic-based water quality monitoring and maintenance system for precision aquaculture,” Aquac. Int., vol. 33, no. 1, pp. 1–21, 2025, doi: 10.1007/s10499-024-01701-2.

H. Brandão, Í. V. Xavier, G. K. K. Santana, H. J. K. Santana, D. Krummenauer, and W. Wasielesky, “Heterotrophic versus mixed BFT system: impacts on water use, suspended solids production and growth performance of Litopenaeus vannamei,” Aquac. Eng., vol. 95, p. 102194, 2021, doi: https://doi.org/10.1016/j.aquaeng.2021.102194.

A. M. Alinsangao, L. B. Igano, and P. A. M. Flores, “Efficiency of biofloc system on the growth and survival of African catfish (Clarias gariepinus) fingerlings,” J. Agric. Res. Dev. Ext. Technol., vol. 1, no. 1, pp. 10–20, 2019, [Online]. Available: https://jardet.usm.edu.ph/index.php/jardet/article/view/2

Salamah, N. Bambang Priyo Utomo, M. Yuhana, and Widanarni, “Kinerja pertumbuhan ikan lele dumbo, Clarias gariepinus Burchel 1822 yang dikultur pada sistem berbasis bioflok dengan penambahan sel bakteri heterotrofik [Growth performance of African catfish, Clarias gariepinus Burchel 1822 cultured in a biofloc-based ,” J. Iktiologi Indones., vol. 15, no. 2, pp. 155–164, 2014.

P. C. Nath et al., “Valorization of food waste as animal feed: a step towards sustainable food waste management and circular bioeconomy,” Animals, vol. 13, no. 8, pp. 1–23, 2023, doi: 10.3390/ani13081366.

G. C. Shurson, “‘What a waste’-can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises?,” Sustain., vol. 12, no. 17, 2020, doi: 10.3390/su12177071.

Y. Avnimelech, M. Kochva, and S. Diab, “Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio,” Isr. J. Aquac., vol. 46, no. 3, pp. 119–131, 1994.

D. E. Brune, G. Schwartz, A. G. Eversole, J. A. Collier, and T. E. Schwedler, “Intensification of pond aquaculture and high rate photosynthetic systems,” Aquac. Eng., vol. 28, no. 1, pp. 65–86, 2003, doi: https://doi.org/10.1016/S0144-8609(03)00025-6.

A. G. J. Tacon, “Thematic review of feeds and feed management practices in shrimp aquaculture,” Intellect. Prop., pp. 1–38, 2002, [Online]. Available: http://library.enaca.org/Shrimp/Case/Thematic/FinalFeed.pdf

P. Bossier and J. Ekasari, “Biofloc technology application in aquaculture to support sustainable development goals,” Microb. Biotechnol., vol. 10, no. 5, pp. 1012–1016, 2017, doi: 10.1111/1751-7915.12836.

C. Li, Z. Ge, L. Dai, and Y. Chen, “Integrated application of biofloc technology in aquaculture: a review,” Water (Switzerland), vol. 17, no. 14, 2025, doi: 10.3390/w17142107.

T. Lovell, Nutrition and Feeding of Fish. Boston, MA: Springer US, 1998. doi: 10.1007/978-1-4615-4909-3.

P. Pallerla et al., “Evaluation of amino acids and other related metabolites levels in end-stage renal disease (ESRD) patients on hemodialysis by LC/MS/MS and GC/MS,” Anal. Bioanal. Chem., vol. 415, no. 26, pp. 6491–6509, 2023, doi: 10.1007/s00216-023-04926-x.

R. R. Stickney, Principles of warmwater aquaculture. John Wiley & Sons.

A. G. Heath, Water Pollution and Fish Physiology. CRC Press, 2018. doi: 10.1201/9780203718896.

M. Ruby and Velasco Mario, “Role of bacteria on nutritional and management strategies in aquaculture systems - Responsible Seafood Advocate,” Glob. Advocate, pp. 35–36, 2000, [Online]. Available: https://www.globalseafood.org/advocate/role-of-bacteria-on-nutritional-and-management-strategies-in-aquaculture-systems/

M. Wang, Y. Wu, J. Zhu, C. Wang, Y. Zhu, and Q. Tian, “The new developments made in the autotrophic and heterotrophic ammonia oxidation,” IOP Conf. Ser. Earth Environ. Sci., vol. 178, no. 1, pp. 8–13, 2018, doi: 10.1088/1755-1315/178/1/012016.

W. Fu et al., “Advances in research into and applications of heterotrophic nitrifying and aerobic denitrifying microorganisms,” Front. Environ. Sci., vol. 10, no. July, pp. 1–16, 2022, doi: 10.3389/fenvs.2022.887093.

J. M. Ebeling and M. B. Timmons, “Recirculating Aquaculture Systems,” in Aquaculture Production Systems, Wiley, 2012, pp. 245–277. doi: 10.1002/9781118250105.ch11.

A. F. Rocha et al., “Water quality and juvenile development of mullet Mugil liza in a biofloc system with an additional carbon source: Dextrose, liquid molasses or rice bran?,” Aquac. Res., vol. 53, no. 3, pp. 870–883, Feb. 2022, doi: 10.1111/are.15628.

W. Ren et al., “Tropical cellulolytic bacteria: potential utilization of sugarcane bagasse as low-cost carbon source in aquaculture,” Front. Microbiol., vol. 12, no. October, pp. 1–11, 2021, doi: 10.3389/fmicb.2021.745853.

W. Wang et al., “Microbial protein production under mixotrophic mode: ammonium assimilation pathway and C/N ratio optimization,” J. Environ. Chem. Eng., vol. 12, no. 1, p. 111727, 2024, doi: https://doi.org/10.1016/j.jece.2023.111727.

T. K. Marella, R. Bhattacharjya, and A. Tiwari, “Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms,” Microb. Cell Fact., vol. 20, no. 1, pp. 1–13, 2021, doi: 10.1186/s12934-021-01627-x.

Y. Cai et al., “Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate,” Biotechnol. Biofuels Bioprod., vol. 15, no. 1, pp. 1–11, 2022, doi: 10.1186/s13068-022-02204-z.

O. Schneider, V. Sereti, M. A. M. Machiels, E. H. Eding, and J. A. J. Verreth, “The potential of producing heterotrophic bacteria biomass on aquaculture waste,” Water Res., vol. 40, no. 14, pp. 2684–2694, 2006, doi: https://doi.org/10.1016/j.watres.2006.05.008.

S. M. Kasihmuddin, Z. C. Cob, N. M. Noor, and S. K. Das, “Effect of different temperature variations on the physiological state of catfish species: a systematic review,” Fish Physiol. Biochem., vol. 50, no. 2, pp. 413–434, 2024, doi: 10.1007/s10695-024-01323-8.

S. M. Kasihmuddin, M. A. Ghaffar, and S. K. Das, “Rising temperature effects on growth and gastric emptying time of freshwater african catfish (Clarias gariepinus) fingerlings,” Animals, vol. 11, no. 12, 2021, doi: 10.3390/ani11123497.

K. Kut, G. Bartosz, and I. Sadowska-Bartosz, “Denaturation and digestion increase the antioxidant capacity of proteins,” Processes, vol. 11, no. 5, pp. 1–11, 2023, doi: 10.3390/pr11051362.

B. Wang, Y. P. Timilsena, E. Blanch, and B. Adhikari, “Lactoferrin: structure, function, denaturation and digestion,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 4, pp. 580–596, 2019, doi: 10.1080/10408398.2017.1381583.

A. Goyal and M. T. M. Koper, “The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media,” Angew. Chemie - Int. Ed., vol. 60, no. 24, pp. 13452–13462, 2021, doi: 10.1002/anie.202102803.

D. Makararpong, M. Ketcham, T. Ganokratanaa, N. Chumuang, W. Yimyam, and P. Pramkeaw, “Development of a system for measuring pH and oxygen levels in water using Internet of Things (IoT) technology,” in 2025 IEEE International Conference on Cybernetics and Innovations (ICCI), 2025, pp. 1–7. doi: 10.1109/ICCI64209.2025.10987306.

A. Mariu, A. M. M. Chatha, S. Naz, M. F. Khan, W. Safdar, and I. Ashraf, “Effect of temperature, pH, salinity and dissolved oxygen on fishes,” J. Zool. Syst., vol. 1, no. 2, pp. 1–12, 2023, doi: 10.56946/jzs.v1i2.198.

J. A. Raven and M. Lavoie, “Movement of Aquatic Oxygenic Photosynthetic Organisms BT - Progress in Botany Vol. 83,” U. Lüttge, F. M. Cánovas, M.-C. Risueño, C. Leuschner, and H. Pretzsch, Eds., Cham: Springer International Publishing, 2023, pp. 315–343. doi: 10.1007/124_2021_55.

V. Singh, R. K. Srivastava, and A. K. Bhatt, “Dissolved Oxygen and Water Quality BT - Battling Air and Water Pollution: Protecting Our Planet’s Vital Resources,” V. Singh, R. K. Srivastava, and A. K. Bhatt, Eds., Singapore: Springer Nature Singapore, 2025, pp. 111–120. doi: 10.1007/978-981-96-4375-2_8.

M. A. O. Dawood, A. E. Noreldin, and H. Sewilam, “Blood biochemical variables, antioxidative status, and histological features of intestinal, gill, and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress,” Environ. Sci. Pollut. Res., vol. 29, no. 37, pp. 56357–56369, 2022, doi: 10.1007/s11356-022-19702-0.

S. Langi, S. Maulu, O. J. Hasimuna, V. Kaleinasho Kapula, and M. Tjipute, “Nutritional requirements and effect of culture conditions on the performance of the African catfish (Clarias gariepinus): a review,” Cogent Food Agric., vol. 10, no. 1, p., 2024, doi: 10.1080/23311932.2024.2302642.

E. Beltrán-Flores, S. Tayar, P. Blánquez, and M. Sarrà, “Effect of dissolved oxygen on the degradation activity and consumption capacity of white-rot fungi,” J. Water Process Eng., vol. 55, p. 104105, 2023, doi: https://doi.org/10.1016/j.jwpe.2023.104105.

A. B. Dauda et al., “Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system,” Fish. Sci., vol. 83, no. 6, pp. 1037–1048, Nov. 2017, doi: 10.1007/s12562-017-1144-7.

Y.-B. Yu, J.-H. Choi, J.-H. Lee, A.-H. Jo, K. M. Lee, and J.-H. Kim, “Biofloc technology in fish aquaculture: a review,” Antioxidants, vol. 12, no. 2, p. 398, Feb. 2023, doi: 10.3390/antiox12020398.

S. Chakrapani et al., “Utilization of complex carbon sources on biofloc system and its influence on the microbial composition, growth, digestive enzyme activity of pacific white shrimp, Penaeus vannamei culture,” Turkish J. Fish. Aquat. Sci., vol. 22, no. 4, 2021, doi: 10.4194/trjfas18813.

Published
2025-08-16
How to Cite
Iqbal, M., & Rasul, Z. (2025). Bacteria–Molasses Synergy in Heterotrophic Systems: A Sustainable Strategy for Catfish Survival and Water Quality Improvement . Journal of Academic Biology and Biology Education, 2(1), 106-122. https://doi.org/10.37251/jouabe.v2i1.2087
Section
Articles