Comparative Effectiveness of Tamarind (Tamarindus indica) and Starfruit (Averrhoa bilimbi) Solutions in Reducing Lead (Pb) Levels in Shellfish (Polymesoda erosa)

  • A. Mirnayanti Alauddin State Islamic University of Makassar
  • Mary Grace B Maribao University of Perpetual Help System Dalta
  • San Techly University of Puthisastra
Keywords: Lead (Pb), Polymesoda erosa, Starfruit, Tamarind

Abstract

Purpose of the study: This study aims to determine the effectiveness of soaking duration in tamarind (Tamarindus indica) and starfruit (Averrhoa bilimbi) solutions in reducing the concentration of heavy metal lead (Pb) in shellfish (Polymesoda erosa) before and after treatment.

Methodology: This study employed a descriptive method using Atomic Absorption Spectrophotometry (AAS) to measure Pb levels in Polymesoda erosa clams. Samples from Paotere Market, Makassar, were soaked in tamarind or starfruit solutions for 30, 60, and 90 minutes, then analyzed using AAS at a wavelength of 217.0 nm.

Main Findings: Soaking Polymesoda erosa in tamarind solution for 30, 60, and 90 minutes reduced Pb levels by 30.69%, 40.92%, and 50%, respectively. Soaking in starfruit solution for the same durations reduced Pb levels by 19.32%, 65.91%, and 93.18%, respectively. Starfruit solution soaking for 90 minutes achieved Pb levels below the permissible consumption limit.

Novelty/Originality of this study: This study introduces the comparative use of tamarind (Tamarindus indica) and starfruit (Averrhoa bilimbi) solutions to reduce Pb levels in Polymesoda erosa. It reveals starfruit’s superior effectiveness due to higher citric acid content, offering a simple, natural, and low-cost method for heavy metal reduction in seafood, potentially improving food safety in coastal communities.

References

Vandana, M. Priyadarshanee, U. Mahto, and S. Das, “Mechanism of toxicity and adverse health effects of environmental pollutants,” in Microbial Biodegradation and Bioremediation, Elsevier, 2022, pp. 33–53. doi: 10.1016/B978-0-323-85455-9.00024-2.

G. Palani et al., “Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review,” Molecules, vol. 26, no. 9, p. 2799, May 2021, doi: 10.3390/molecules26092799.

N. Akhtar, M. I. Syakir Ishak, S. A. Bhawani, and K. Umar, “Various natural and anthropogenic factors responsible for water quality degradation: A review,” Water (Switzerland), vol. 13, no. 19, 2021, doi: 10.3390/w13192660.

O. I. Ogidi and U. M. Akpan, “Aquatic Biodiversity Loss: Impacts of Pollution and Anthropogenic Activities and Strategies for Conservation BT - Biodiversity in Africa: Potentials, Threats and Conservation,” S. Chibueze Izah, Ed., Singapore: Springer Nature Singapore, 2022, pp. 421–448. doi: 10.1007/978-981-19-3326-4_16.

M. M. Uddin, M. C. M. Zakeel, J. S. Zavahir, F. M. M. T. Marikar, and I. Jahan, “Heavy metal accumulation in rice and aquatic plants used as human food: a general review,” Toxics, vol. 9, no. 12, 2021, doi: 10.3390/toxics9120360.

M. Rose, “Chapter 8 - Pollutants, residues and other contaminants in foods obtained from marine and fresh water,” M. E. Knowles, L. E. Anelich, A. R. Boobis, and B. B. T.-P. K. in F. S. Popping, Eds., Academic Press, 2023, pp. 128–141. doi: 10.1016/B978-0-12-819470-6.00040-8.

J. Pandiyan et al., “An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security,” Saudi J. Biol. Sci., vol. 28, no. 2, pp. 1218–1225, 2021, doi: 10.1016/j.sjbs.2020.11.072.

S. B. Shah, “Heavy Metals in the Marine Environment—An Overview BT - Heavy Metals in Scleractinian Corals,” S. B. Shah, Ed., Cham: Springer International Publishing, 2021, pp. 1–26. doi: 10.1007/978-3-030-73613-2_1.

S. Zhang, K. Fu, S. Gao, B. Liang, J. Lu, and G. Fu, “Bioaccumulation of heavy metals in the water, sediment, and organisms from the sea ranching areas of haizhou bay in China,” Water (Switzerland), vol. 15, no. 12, 2023, doi: 10.3390/w15122218.

J. M. Maung and K. L. Tun, “Reproductive cycle and gonad development of mud clam , Polymesoda erosa (Bivalvia : Corbiculidae) in Chaung Tha, Ayeyarwaddy Region, Myanmar,” Univ. Yangon Res. J., vol. 11, no. 2, 2022.

Bahtiar, L. Fekri, E. Ishak, M. F. Purnama, Y. I. Permatahati, and I. Nur, “Temporal variations in growth and condition index of kalandue clams (Polymesoda erosa, Solander 1786) in Kendari Bay, Southeast Sulawesi,” IOP Conf. Ser. Earth Environ. Sci., vol. 1224, no. 1, 2023, doi: 10.1088/1755-1315/1224/1/012021.

D. Witkowska, J. Słowik, and K. Chilicka, “Review heavy metals and human health: Possible exposure pathways and the competition for protein binding sites,” Molecules, vol. 26, no. 19, 2021, doi: 10.3390/molecules26196060.

K. Jomova, S. Y. Alomar, E. Nepovimova, K. Kuca, and M. Valko, Heavy metals: toxicity and human health effects, vol. 99, no. 1. Springer Berlin Heidelberg, 2025. doi: 10.1007/s00204-024-03903-2.

A. Sarker et al., “Heavy metals contamination and associated health risks in food webs—a review focuses on food safety and environmental sustainability in Bangladesh,” Environ. Sci. Pollut. Res., vol. 29, no. 3, pp. 3230–3245, 2022, doi: 10.1007/s11356-021-17153-7.

S. Collado-l, L. Betanzos-robledo, M. Mar, H. Lamadrid-figueroa, C. Ríos, and A. Cantoral, “Heavy metals in unprocessed or minimally processed foods consumed by humans worldwide: a scoping review,” Int. J. Environ. Res. Public Heal. Rev., vol. 19, pp. 1–25, 2022.

G. Zhuzzhassarova, F. Azarbayjani, and G. Zamaratskaia, “Fish and seafood safety: human exposure to toxic metals from the aquatic environment and fish in Central Asia,” Int. J. Mol. Sci., vol. 25, no. 3, 2024, doi: 10.3390/ijms25031590.

M. Zaynab et al., “Health and environmental effects of heavy metals,” J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101653, 2022, doi: 10.1016/j.jksus.2021.101653.

L. Parida and T. N. Patel, “Systemic impact of heavy metals and their role in cancer development: a review,” Environ. Monit. Assess., vol. 195, no. 6, p. 766, 2023, doi: 10.1007/s10661-023-11399-z.

G. I. Edo et al., “Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals,” Chem. Ecol., vol. 40, no. 3, pp. 322–349, Mar. 2024, doi: 10.1080/02757540.2024.2306839.

M. K. Abd Elnabi et al., “Toxicity of heavy metals and recent advances in their removal: a review,” Toxics, vol. 11, no. 7, p. 580, Jul. 2023, doi: 10.3390/toxics11070580.

M. Eero et al., “Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea,” ICES J. Mar. Sci., vol. 78, no. 8, pp. 2645–2663, 2021, doi: 10.1093/icesjms/fsab145.

D. Cossa et al., “Mediterranean mercury assessment 2022: an updated budget, health consequences, and research perspectives,” Environ. Sci. Technol., vol. 56, no. 7, pp. 3840–3862, 2022, doi: 10.1021/acs.est.1c03044.

P. Kumar, P. Sivaperumal, V. Manigandan, R. Rajaram, and M. Hussain, “Assessment of potential human health risk due to heavy metal contamination in edible finfish and shellfish collected around Ennore coast, India,” Environ. Sci. Pollut. Res., vol. 28, no. 7, pp. 8151–8167, 2021, doi: 10.1007/s11356-020-10764-6.

N. Gökoğlu, “Shellfish Safety BT - Shellfish Processing and Preservation,” N. Gökoğlu, Ed., Cham: Springer International Publishing, 2021, pp. 281–312. doi: 10.1007/978-3-030-60303-8_5.

E. C. Bair, “A narrative review of toxic heavy metal content of infant and toddler foods and evaluation of United States policy,” Front. Nutr., vol. 9, no. June, pp. 1–9, 2022, doi: 10.3389/fnut.2022.919913.

A. C. Olufemi, A. Mji, and M. S. Mukhola, “Potential health risks of lead exposure from early life through later life: implications for public health education,” Int. J. Environ. Res. Public Health, vol. 19, no. 23, 2022, doi: 10.3390/ijerph192316006.

C. Hemalatha and S. Parameshwari, “The scope of tamarind (Tamarindus indica L.) kernel powder in diverse spheres: A review,” Mater. Today Proc., vol. 45, pp. 8144–8148, 2021, doi: 10.1016/j.matpr.2021.02.119.

H. Sheikh and G. B. Shivanna, “Tamarindus indica seeds and their neutraceutical applications,” J. Food Process. Preserv., vol. 46, no. 12, Dec. 2022, doi: 10.1111/jfpp.17208.

K. Lakmal, P. Yasawardene, U. Jayarajah, and S. L. Seneviratne, “Nutritional and medicinal properties of Star fruit (Averrhoa carambola): A review,” Food Sci. Nutr., vol. 9, no. 3, pp. 1810–1823, 2021, doi: 10.1002/fsn3.2135.

H. Imran, N. Kurniawati, A. Amiruddin, N. Nurdin, W. Wirza, and R. Wilis, “The effectiveness of vegetable starfruit juice (Averrhoa bilimbi) and rosella tea (Hibiscus sabdariffa L) against the inhibition of dental plaque formation,” Open Access Maced. J. Med. Sci., vol. 10, no. G, pp. 599–602, 2022, doi: 10.3889/oamjms.2022.8787.

S. Gupta and R. Gupta, “Star fruit (Averrhoa carambola L.): exploring the wonders of Indian folklore and the miracles of traditional healing,” Int. J. Second. Metab., vol. 11, no. 2, pp. 378–393, 2024, doi: 10.21448/ijsm.1348465.

F. Amelia, R. Ramses, and I. Ismarti, “the effect of the use of organic acids to reduce the levels of metal lead (Pb) on the meat of gonggong snails,” Indones. J. Pure Appl. Chem., vol. 7, no. 1, p. 10, 2024, doi: 10.26418/indonesian.v7i1.64459.

S. S. Santi, T. Wahyudi, C. Siyam, and T. P. D. Rachmani, “Effectiveness tamarind to reduction of Pb content in red mussels,” J. Phys. Conf. Ser., vol. 1569, no. 4, pp. 1–9, 2020, doi: 10.1088/1742-6596/1569/4/042055.

J. Farmasi, F. Mipa, and U. Tadulako, “Pengaruh jenis asam alami terhadap penurunan kadar logam berat timbal dalam daging ikan teri ( Stelophorus indicus Sp ) asal Teluk Palu [ The Effect of Type Natural Acid Against Decline of Content Heavy Metals Plumbum in Meat Anchovy ( Stelophorus indicus,” KOVALEN, vol. 2, no. 3, pp. 80–85, 2016, [Online]. Available: https://bestjournal.untad.ac.id/index.php/kovalen/article/view/7539

H. Mahmoud, A. A. A. Mohammed, M. S. Nasser, I. A. Hussein, and M. H. El-Naas, “Green drilling fluid additives for a sustainable hole-cleaning performance: a comprehensive review,” Emergent Mater., vol. 7, no. 2, pp. 387–402, 2024, doi: 10.1007/s42247-023-00524-w.

A. Manianga, C. Bose, and S. S, “Sustainable applications of phytochemicals and nutritive components derived from selected underutilized seeds: a review,” Acta Sci. Pol. Technol. Aliment., vol. 23, no. 1, pp. 87–122, 2024, doi: 10.17306/J.AFS.001204.

H. Taherdoost, “What are different research approaches? comprehensive review of qualitative, quantitative, and mixed method research, their applications, types, and limitations,” J. Manag. Sci. Eng. Res., vol. 5, no. 1, pp. 53–63, 2022, doi: 10.30564/jmser.v5i1.4538.

A. Ghanad, “An overview of quantitative research methods,” Int. J. Multidiscip. Res. Anal., vol. 06, no. 08, pp. 3794–3803, 2023, doi: 10.47191/ijmra/v6-i8-52.

K. Mandal et al., “Sequestration of toxic metal ions from industrial effluent using the novel chelating resin Tamarind Triazine Amino Propanoic Acid (TTAPA),” Water (Switzerland), vol. 15, no. 16, 2023, doi: 10.3390/w15162924.

C. C. Futalan, E. Diana, M. F. A. Edang, J. M. Padilla, M. C. Cenia, and D. M. Alfeche, “Adsorption of lead from aqueous solution using activated carbon derived from rice husk modified with lemon juice,” Sustain., vol. 15, no. 22, pp. 1–14, 2023, doi: 10.3390/su152215955.

S. A. Mahmoud, A. S. Orabi, L. I. Mohamedein, K. M. El-Moselhy, and E. M. Saad, “Eco-friend shellfish powder of the mussel Brachidontes variabilis for uptake lead (II) ions,” Biomass Convers. Biorefinery, vol. 14, no. 15, pp. 17201–17218, 2024, doi: 10.1007/s13399-023-03950-2.

Published
2025-06-23
How to Cite
Mirnayanti, A., Maribao, M. G. B., & Techly, S. (2025). Comparative Effectiveness of Tamarind (Tamarindus indica) and Starfruit (Averrhoa bilimbi) Solutions in Reducing Lead (Pb) Levels in Shellfish (Polymesoda erosa) . Journal of Academic Biology and Biology Education, 2(1), 97-105. https://doi.org/10.37251/jouabe.v2i1.2073
Section
Articles