Comparison of Protein Content in Mackerel Meat (Rastrelliger sp.) Preserved with Salt and Chitosan

  • Mudrikatul Asna Universitas Islam Negeri Walisongo Semarang
  • Angsoka Dwipayana Marthaliakirana Universitas Negeri Malang
  • Bayan Wageh Mansora University
Keywords: Chitosan, Mackerel, Protein Content, Preservation, Salt

Abstract

Purpose of the study: This study aims to determine the differences in protein levels in mackerel meat (Rastrellinger sp) preserved using salt (NaCl) and chitosan.

Methodology: This study used an experimental method. The sample used in this study was mackerel (Rastrellinger sp) from Tambak Lorok Semarang. Analysis of protein levels was carried out using the biuret test. The data analysis technique used quantitative descriptive analysis.

Main Findings: The results of the study showed that the highest protein content of mackerel preserved with salt was 8% concentration on the first day, which was 10,990 ppm, while the lowest protein content was at 20% concentration on the third day, which was 10,270 ppm. The highest protein content of mackerel preserved with chitosan was 20% concentration on the first day, which was 11,120 ppm, while the lowest protein content was at 8% concentration on the third day, which was 10,180 ppm. The highest protein content of the two preservation methods was preservation using chitosan.

Novelty/Originality of this study: The ethanol extract of C. burmanni leaves showed potential teratogenic effects on fetal development in white mice, characterized by growth retardation and morphological abnormalities. This study provides an important basis for evaluating the safety of using this plant during pregnancy.

References

Nasmia, S. Natsir, Rusaini, A. M. Tahya, J. Nilawati, and S. N. Ismail, “Utilization of Caulerpa sp. as a feed ingredient for growth and survival of whiteleg shrimp and Chanos chanos in polyculture,” Egypt. J. Aquat. Res., vol. 48, no. 2, pp. 175–180, 2022, doi: 10.1016/j.ejar.2022.01.005.

I. Wijayanti, T. Surti, A. D. Anggo, and E. Susanto, “Effect different packaging on proximate and lysine content of milkfish [chanos chanos (forsskål, 1775)] floss during storage,” Aquat. Procedia, vol. 7, pp. 118–124, 2016, doi: 10.1016/j.aqpro.2016.07.016.

M. Hussain et al., “Effect of varying dietary protein levels on growth performance and survival of milkfish Chanos chanos fingerlings reared in brackish water pond ecosystem,” Egypt. J. Aquat. Res., vol. 47, no. 3, pp. 329–334, 2021, doi: 10.1016/j.ejar.2021.05.001.

A. Warsa, L. P. Astuti, S. E. Purnamaningtyas, A. S. Nastiti, and D. W. Hendro Tjahjo, “Stocked milkfish (Chanos chanos) growth and production in Spam Curug, Karawang-West Java,” Egypt. J. Aquat. Res., no. May, 2025, doi: 10.1016/j.ejar.2025.05.009.

S. B. Prayitno, Sarwan, and Sarjito, “The diversity of gut bacteria associated with milkfish (chanos chanos forsksal) from northern coast of central java, Indonesia,” Procedia Environ. Sci., vol. 23, no. Ictcred 2014, pp. 375–384, 2015, doi: 10.1016/j.proenv.2015.01.054.

G. X. L. Silvederio et al., “Gut microbiome composition and diversity of wild-caught and hatchery-bred milkfish (Chanos chanos) fry,” J. Genet. Eng. Biotechnol., vol. 23, no. 3, p. 100520, 2025, doi: 10.1016/j.jgeb.2025.100520.

Z. J. Yong, W. J. Lin, S. C. Hsieh, and H. J. Lin, “Comparison of carbon budgets and greenhouse gas fluxes in monoculture ponds with milkfish (chanos chanos) and taiwanese hard clams (meretrix taiwanica),” Aquac. Reports, vol. 43, no. January, 2025, doi: 10.1016/j.aqrep.2025.102924.

Z. Zhang, J. Zhao, J. Zang, C. Peng, L. Lv, and Z. Li, “The inhibition mechanism of PostbioYDFF-3 on quality deterioration of refrigerated grass carp fillets from the perspective of endogenous enzyme and microorganisms changes,” Food Chem., vol. 450, p. 139345, Aug. 2024, doi: 10.1016/j.foodchem.2024.139345.

Q. Du, R. Dong, M. Yu, S. Benjakul, Z. Liu, and B. Zhang, “Physicochemical, volatile flavor, and microflora changes in the cephalothorax and pincer muscles of swimming crab (Ovalipes punctatus) during frozen storage: Molecular mechanisms of quality deterioration,” Food Res. Int., vol. 218, p. 116922, Oct. 2025, doi: 10.1016/j.foodres.2025.116922.

J. Huang, Y. Zhou, M. Chen, J. Huang, Y. Li, and Y. Hu, “Evaluation of negative behaviors for single specific spoilage microorganism on little yellow croaker under modified atmosphere packaging: Biochemical properties characterization and spoilage-related volatiles identification,” LWT, vol. 140, no. 1, p. 110741, Apr. 2021, doi: 10.1016/j.lwt.2020.110741.

A. Klonecka et al., “XANES reference library of sulphur-containing compounds for biological research: a status report from the astra beamline at the solaris national synchrotron radiation centre,” RSC Adv., vol. 15, no. 17, pp. 13513–13524, 2025, doi: 10.1039/D5RA00682A.

L. Gao, G. Haesaert, F. Van Bockstaele, P. Vermeir, and M. Eeckhout, “Interactive effects of genotype, nitrogen and sulfur fertilization on buckwheat starch properties: Composition, functionality and gelatinization,” Int. J. Biol. Macromol., vol. 308, no. 1, p. 142775, May 2025, doi: 10.1016/j.ijbiomac.2025.142775.

L. Gao, F. Van Bockstaele, G. Haesaert, A. Skirtach, and M. Eeckhout, “Effects of nitrogen and sulfur fertilizer treatment on the structure and physicochemical properties of resistant starch in buckwheat,” Food Chem., vol. 477, no. 2, p. 143620, Jun. 2025, doi: 10.1016/j.foodchem.2025.143620.

İ. Gülçin et al., “Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties,” Bioorg. Chem., vol. 103, p. 104171, Oct. 2020, doi: 10.1016/j.bioorg.2020.104171.

J. Gao, X. Tang, X. Yu, Z. Wu, Y. Liu, and M. Miao, “Overexpression of solanum lycopersicum DDB1 interacting protein 4 (SlDDI4) extends tomato shelf life by methylation-mediated suppression of softening-related genes expression,” Postharvest Biol. Technol., vol. 216, p. 113040, Oct. 2024, doi: 10.1016/j.postharvbio.2024.113040.

G. S. Maia, L. Marangoni Júnior, and R. P. Vieira, “Tannic acid as a multifunctional additive in polysaccharide and protein-based films for enhanced food preservation: A comprehensive review,” Adv. Colloid Interface Sci., vol. 339, p. 103428, May 2025, doi: 10.1016/j.cis.2025.103428.

J. M. Gill et al., “Fish waste biorefinery: A novel approach to promote industrial sustainability,” Bioresour. Technol., vol. 419, no. 2, p. 132050, Mar. 2025, doi: 10.1016/j.biortech.2025.132050.

M. B. Rahman et al., “An update on formaldehyde adulteration in food: sources, detection, mechanisms, and risk assessment,” Food Chem., vol. 427, no. 3, p. 136761, Nov. 2023, doi: 10.1016/j.foodchem.2023.136761.

G. Kaur, S. Tripathy, S. Rout, G. Mishra, B. K. Panda, and P. P. Srivastav, “Formalin adulteration in fish: A state-of-the-art review on its prevalence, detection advancements, and affordable device innovations,” Trends Food Sci. Technol., vol. 153, p. 104708, Nov. 2024, doi: 10.1016/j.tifs.2024.104708.

A. Benny, R. E. Renitta, X. A. Mary, P. K. Dutta, C. Karthik, and E.-S. M. El-kenawy, “Machine learning algorithm review for the detection of formalin in fish,” IET Conf. Proc., vol. 2023, no. 44, pp. 344–349, Feb. 2024, doi: 10.1049/icp.2024.0948.

N. D. Nnaji, H. Onyeaka, K. T. Ughamba, C. M. Ononugbo, C. V. Olovo, and I. M. Mazi, “Chemical toxicants used for food preservation in africa. is it a case of ignorance or food fraud? a review,” Heal. Sci. Reports, vol. 8, no. 4, pp. 1–14, Apr. 2025, doi: 10.1002/hsr2.70333.

M. Jurić, L. Maslov Bandić, D. Carullo, and S. Jurić, “Technological advancements in edible coatings: Emerging trends and applications in sustainable food preservation,” Food Biosci., vol. 58, no. 1, p. 103835, Apr. 2024, doi: 10.1016/j.fbio.2024.103835.

B. Alizadeh Behbahani, F. Tabatabaei Yazdi, F. Shahidi, H. Noorbakhsh, A. Vasiee, and A. Alghooneh, “Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria,” Microb. Pathog., vol. 114, no. 1, pp. 225–232, Jan. 2018, doi: 10.1016/j.micpath.2017.12.004.

B. Alizadeh Behbahani, F. Tabatabaei Yazdi, F. Shahidi, H. Noorbakhsh, A. Vasiee, and A. Alghooneh, “Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria,” Microb. Pathog., vol. 114, pp. 225–232, Jan. 2018, doi: 10.1016/j.micpath.2017.12.004.

J. A. Pereira Barbosa et al., “Gastroprotective effect of ethyl acetate extract from Avicennia schaueriana Stapf & Leechman and underlying mechanisms,” Biomed. Pharmacother., vol. 112, p. 108582, Apr. 2019, doi: 10.1016/j.biopha.2019.01.043.

K. Arunachalam, P. S. Sreeja, and X. Yang, “Mechanisms and therapeutic actions of edible fruits in inflammatory bowel disease: A review of pre-clinical studies,” Food Chem. Adv., vol. 3, no. 2, p. 100498, Dec. 2023, doi: 10.1016/j.focha.2023.100498.

I. Lezcano, N. Nuñez, M. Espino, and M. Gómez, “Antibacterial activity of ozonized sunflower oil, oleozón, against staphylococcus aureus and staphylococcus epidermidis .,” Ozone Sci. Eng., vol. 22, no. 2, pp. 207–214, Jan. 2000, doi: 10.1080/01919510008547221.

N. Oulahal and P. Degraeve, “Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides?,” Front. Microbiol., vol. 12, no. 2, pp. 158–166, Jan. 2022, doi: 10.3389/fmicb.2021.753518.

L. Bouarab Chibane, P. Degraeve, H. Ferhout, J. Bouajila, and N. Oulahal, “Plant antimicrobial polyphenols as potential natural food preservatives,” J. Sci. Food Agric., vol. 99, no. 4, pp. 1457–1474, Mar. 2019, doi: 10.1002/jsfa.9357.

J. A. Gliner, G. A. Morgan, and N. L. Leech, Research Methods in Applied Settings. Routledge, 2011. doi: 10.4324/9780203843109.

N. Roll-Hansen, “A historical perspective on the distinction between basic and applied science,” J. Gen. Philos. Sci., vol. 48, no. 4, pp. 535–551, Dec. 2017, doi: 10.1007/s10838-017-9362-3.

H. R. Ganesha and P. S. Aithal, “Deriving right sample size and choosing an appropriate sampling technique to select samples from the research population during ph.d. program in India,” Int. J. Appl. Eng. Manag. Lett., vol. 6, no. 2, pp. 288–306, 2022, doi: 10.47992/ijaeml.2581.7000.0159.

F. Mariotti, D. Tomé, and P. P. Mirand, “Converting nitrogen into protein—beyond 6.25 and jones’ factors,” Crit. Rev. Food Sci. Nutr., vol. 48, no. 2, pp. 177–184, Jan. 2008, doi: 10.1080/10408390701279749.

A. Y. Al-Ghamdi, A. A. Fadlelmula, M. O. M. Abdalla, and S. A. Zabin, “Phytochemical screening, chemical composition, antimicrobial activity and in silico investigation of the essential oil of coleus forskohlii l. collected from the southwestern region of Saudi Arabia,” J. Essent. Oil-Bearing Plants, vol. 24, no. 1, pp. 120–133, 2021, doi: 10.1080/0972060X.2021.1901613.

K. A. Audah et al., “Indonesian mangrove sonneratia caseolaris leaves ethanol extract is a potential super antioxidant and anti methicillin-resistant staphylococcus aureus drug,” Molecules, vol. 27, no. 23, p. 8369, Nov. 2022, doi: 10.3390/molecules27238369.

T. T. Nguyen, U. T. Thi Dao, Q. P. Thi Bui, G. L. Bach, C. N. Ha Thuc, and H. Ha Thuc, “Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract,” Prog. Org. Coatings, vol. 140, p. 105487, Mar. 2020, doi: 10.1016/j.porgcoat.2019.105487.

G. Eswaraiah, K. A. Peele, S. Krupanidhi, R. B. Kumar, and T. C. Venkateswarulu, “Studies on phytochemical, antioxidant, antimicrobial analysis and separation of bioactive leads of leaf extract from the selected mangroves,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 842–847, Jan. 2020, doi: 10.1016/j.jksus.2019.03.002.

S. Bhambhani, K. R. Kondhare, and A. P. Giri, “Diversity in chemical structures and biological properties of plant alkaloids,” Molecules, vol. 26, no. 11, p. 3374, Jun. 2021, doi: 10.3390/molecules26113374.

N. U. Karim, U. S. A. A. Siddiq, M. R. M. Razak, M. K. M. Zainol, and M. I. Abdullah, “Effects of moringa leaves (Moringa oleifera) extraction on quality changes and melanosis of giant freshwater prawn (Macrobrachium rosenbergii) during chilled storage,” Ital. J. Food Saf., vol. 7, no. 3, Sep. 2018, doi: 10.4081/ijfs.2018.6846.

S. Pezeshk, S. M. Ojagh, and A. AlishahI, “Effect of plant antioxidant and antimicrobial compounds on the shelf-life of seafood - a review,” Czech J. Food Sci., vol. 33, no. 3, pp. 195–203, Jun. 2015, doi: 10.17221/593/2014-CJFS.

Published
2026-01-09
How to Cite
Asna, M., Marthaliakirana, A. D., & Wageh, B. (2026). Comparison of Protein Content in Mackerel Meat (Rastrelliger sp.) Preserved with Salt and Chitosan. Journal of Academic Biology and Biology Education, 2(2). https://doi.org/10.37251/jouabe.v2i2.1948
Section
Articles