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 Purpose of the study: To estimate the ground state energy of the one-

dimensional harmonic oscillator using the variational principle and Python-

based numerical methods. 

Methodology: Python 3.11 was used with NumPy, SciPy, and Matplotlib 

libraries. The variational method was applied using multiple trial wavefunctions. 

Integrals were computed via Simpson’s rule, and optimization was done through 

parameter scanning. 

Main Findings: The Gaussian trial wavefunction produced a ground state 

energy of 0.5003 ℏω, showing 0.06% error. Other trial functions were less 

accurate. The results confirm that the choice of trial function critically affects the 
energy estimate, and Python effectively supports variational computations in 

quantum systems. 

Novelty/Originality of this study: This study integrates computational tools 

with the variational principle, presenting an accessible approach to energy 
estimation in quantum mechanics. It demonstrates how Python can facilitate 

variational analysis, making the method replicable and educationally useful for 

students and researchers. 
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1. INTRODUCTION 

Quantum mechanics provides a fundamental framework for understanding phenomena at atomic and 

subatomic scales. A central concept within this framework is the ground state energy, representing the lowest 

possible energy a quantum system can possess. Accurate determination of ground state energies is crucial across 

various domains, including chemistry, materials science, and quantum computing, as it influences molecular 

stability, electronic properties, and the design of quantum algorithms [1], [2]. 

While exact solutions to the Schrödinger equation exist for simple systems like the hydrogen atom, most 

real-world systems lack closed-form solutions. Approximation methods, such as the variational principle, offer 

powerful techniques for estimating these energies. Recent studies have expanded the application of variational 

methods to complex systems. For instance, Lihm and Park applied the time-dependent variational principle to 

anharmonic lattice dynamics at finite temperatures, providing insights into phonon behaviors [3]. Similarly, 

Coelho et al. employed the Lewis–Riesenfeld dynamical invariant method to solve time-dependent quantum 

harmonic oscillators with frequency jumps, enhancing our understanding of dynamic quantum systems [4]. 

The integration of computational tools has further advanced the application of variational methods. 

Python-based frameworks like Tequila and TenCirChem have been developed to facilitate the rapid prototyping 
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and simulation of quantum algorithms. Tequila offers a flexible platform for implementing variational quantum 

algorithms, supporting abstract expectation values and interfacing with various quantum simulators [5]. 

TenCirChem, on the other hand, focuses on quantum computational chemistry, enabling efficient simulations of 

variational quantum algorithms for molecular systems [6]. 

Despite these advancements, there is a noticeable lack of accessible, computationally straightforward 

demonstrations of the variational method applied to fundamental quantum systems, such as the one-dimensional 

(1D) harmonic oscillator. Existing studies often focus on complex systems or require advanced mathematical tools, 

making them less accessible to students and early-career researchers [7], [8]. This reveals a clear research gap in 

the availability of simple, computational implementations of the variational method for basic quantum systems. 

Addressing this gap is important to support educational efforts and make foundational quantum mechanics more 

approachable through modern computational tools. 

The pedagogical importance of the 1D harmonic oscillator is well-recognized; however, most educational 

materials present its variational solution analytically, without incorporating computational approaches that could 

enhance understanding and engagement. This study aims to: (1) apply the variational principle to estimate the 

ground state energy of the 1D harmonic oscillator; (2) evaluate the effectiveness of different trial wavefunctions 

in this estimation; and (3) implement the variational method computationally using Python, demonstrating its 

practicality in educational settings. By combining a fundamental quantum system with modern computational 

tools, this study aims to bridge the gap between theoretical concepts and practical application, providing an 

intuitive and hands-on approach to variational techniques in quantum mechanics. 

 

1.1 The Variational Principle in Quantum Mechanics 

The Variational Principle is a powerful technique in quantum mechanics for appraximating the ground 

state energy of a system. The principle asserts that for any trial wavefunction 𝜓, which satisfies the boundary 

concitions and is properly normalized, the expectation value of the Hamittonian �̂� provides an upper bound for 

the true ground state energy 𝐸0. Mathernatically, it is expressed as [9]: 

⟨𝜓|�̂�|𝜓⟩

⟨𝜓 ∣ 𝜓⟩
≥ 𝐸0  … (1) 

Where �̇� is the Harniltonian operator, and 𝐸0 is the true ground state energy. By optimizing the trial 

wavefunction (aften by adjusting parameters), the upper bound can be minimized, leading to an appraximation of 

the actual ground state energy [10], [11]. 

To prove the variational theorem, consider the true eigenfunctions {𝜙𝑛} of the Hamiltonian �̂�, with 

correspanding eigenvalues {𝐸𝑛} : 

�̂�𝜙𝑛 = 𝐸𝑛𝜙𝑛            …(2) 

Ary arbitrary wavefunction 𝜓 can be expanded as a linear combination of the eigenfunctions: 

𝜓 = ∑  𝑛 𝐶𝑛𝜙𝑛 …(3) 

where 𝐶𝑛 are the expansion coefficients. Substituting into the expectation value of the Harniltonian, we 

obtain: 

⟨𝜓|�̂�|𝜓⟩ = ∑  𝑛 |𝐶𝑛|2𝐸𝑛 …(4) 

The norrnalization condition is 
⟨ 𝜓 ∣∣ 𝜓 ⟩ = ∑  𝑛 |𝐶𝑛|2 …(5) 

Since the ground state energy 𝐸0 is the smallest eigervalue, we find: 
⟨𝜓|�̂�|𝜓⟩

⟨𝜓∣𝜓⟩
≥ 𝐸0 …(6) 

Thus, the variational principle establisher an upper bound to the true ground state energy. 

 

Integrating Theories of Motivation, Discipline, and Learning Achievement : The success of the 

variational method relies heavily an the choice of trial wavefunction, similar to how learning achievement is 

influenced by a student's motivation and discipline. According to Robbins and Slavin, motivation plays a pivotal 

role in the learning process by driving engagement, which leads to improved outcomes. Similarly, Gagne's Theory 

of Instruction emphasizes the importance of a structured erviranment to promote learning, anslagous to the 

structured aptimization of trial wavefunctions in the variational method [12]-[14].  

 

Conceptual Model and Visual Framework : 
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To visualize the variational principle and its application in quantum mechanics, consider the following conceptual 

model: 

1. Trial Wavefunction Selection: Represents the trial function as a starting point. 

2. Hamiltonian Optimization: Demonstrates the iterative process of adjusting the wavefunction to 

minimize the upper bound. 

3. Ground State Energy Approximation: Shows how the method converges toward the true ground state 

energy. 

 

This model can be illustrated as a flow diagram: 

Trial Wavefunction − − − − −→
 Optimization  

 Upper Bound Energy − − − − −→
 Iteration  

 True Ground State Energy 

This model provides both a theoretical foundation and a visual representation, helping to understand how 

theoretical principles and real-world applications (such as motivation, discipline, and learning) align through 

structured processes. 

 

 

2. RESEARCH METHOD 

 

2.1 Application to the Harmonic Oscillator 

The harmonic oscillator is a central model in quantum mechanics, describing a particle subject to a 

restoring force proportional to its displacement from equilibrium. The Hamiltonian for the 1D harmonic oscillator 

is given by [15,16]: 

�̂� =
−ℏ2

2𝑚

𝑑2

𝑑𝑥2
+

1

2
𝑚𝜔2𝑥2    … (7)  

The exact ground state energy for this system is known to be 𝐸0 =
1

2
ℏ𝜔, and the corresponding 

wavefunction is a Gaussian: 

𝜓0(𝑥) = (
𝑚𝜔

𝜋ℏ
)

1
4

𝑒−
𝑚𝜔𝑥2

2ℏ   … (8)  

2.1.1 Trial Wavefunction 1: Gaussian Form 

Our first trial wavefunction is a Gaussian function similar in form to the exact solution, but with a 

variational parameter 𝑎 : 

𝜓(𝑥) = 𝐴𝑒−𝑎𝑥2
 … (9)  

This wavefunction is normalized by calculating: 

∫  
∞

−∞

 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥 = √
𝜋

2𝑎
 … (10)  

The expectation value of the Hamiltonian is: 

𝐸(𝑎) =
ℏ2𝑎

2𝑚
+

𝑚𝜔2

8𝑎
    … (11)  

Minimizing 𝐸(𝑎) with respect to 𝑎 gives: 

𝑎 =
𝑚𝜔

2ℏ
  … (12)  

Substituting this into the expression for 𝐸(𝑎) yields: 

𝐸Gaussian = ℏ𝜔 (
1

4
+

1

4
) =

ℏ𝜔

2
   … (13)  

This result is equal to the exact ground state energy. However, for illustrative purposes, we apply the 

variational principle to this system using different trial wavefunctions. 

     This figure 1(a) illustrates the variation of energy as a function of the parameter 𝑎 for the Gaussian 

trial wavefunction. It demonstrates how the energy estimate changes with different values of 𝑎, highlighting the 

minimum energy achieved at an optimal 𝑎. The minimum energy obtained is 0.499ℏ𝜔, which is very close to the 

true ground state energy of 0.5ℏ𝜔. This result underscores the Gaussian wavefunction's efficiency in 

approximating the ground state energy using the variational principle.The figure 1 (b) compares the Gaussian 

wavefunctions for various values of 𝑎, showcasing how their shape adapts. The changes in the width and amplitude 
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of the wavefunctions with varying 𝑎 illustrate the flexibility of the Gaussian form in approximating the ground 

state of the harmonic oscillator [17][-19]. The comparison highlights the impact of the parameter 𝑎 on the trial 

wavefunction's spatial behavior and effectiveness.Together, these figures emphasize the importance of selecting 

and tuning the parameter 𝑎 to enhance the accuracy of ground state energy estimation in the variational method. 

 

2.1.2 Trial Wavefunction 2: Exponential Form 

Our second trial wavefunction is an exponential function similar in form to the exact solution, but with a 

variational parameter 𝑎 : 

𝜓1(𝑥, 𝑎) = 𝐴𝑒−𝑎|𝑥|   … (14)  

This wavefunction is normalized by calculating: 

∫  
∞

−∞

 𝜓1
∗(𝑥, 𝑎)𝜓1(𝑥, 𝑎)𝑑𝑥 =

𝐴2

𝑎
 … (15)  

The expectation value of the Hamiltonian is: 

𝐸(𝑎) =
ℏ2𝑎

2𝑚
+

𝑚𝜔2

4𝑎2
  … (16)  

Minimizing 𝐸(𝑎) with respect to 𝑎 gives: 

𝑎 = √
𝑚𝜔

√2ℏ
  … (17)  

Substituting this into the expression for 𝐸(𝑎) yields: 

𝐸Exponential =
ℏ𝜔

√2
= 0.707ℏ𝜔  … (18)  

This result is larger than the exact ground state energy, but it still serves as an upper bound. 

 

2.1.3 Trial Wavefunction 3: Lorentzian Form 

Next, we consider a Lorentzian trial wavefunction: 

𝜓(𝑥) =
𝐴

𝑥2 + 𝑎
  … (19)  

This function decays more slowly at large distances compared to the Gaussian, making it a qualitatively 

different choice. After normalizing the wavefunction and calculating the expectation value, we minimize the 

energy with respect to 𝑎. The result is: 

𝐸Lorentzian = 0.707ℏ𝜔  … (20)  

This is a less accurate estimate than the Gaussian, with a larger deviation from the exact value. 

 

2.1.4 Trial Wavefunction 4: Rational Form 

Finally, we consider a rational function: 

𝜓(𝑥) =
𝐴

(1 + 𝑎𝑥2)2
 … (21)  

This wavefunction has a more complex shape, allowing it to capture the behavior of the harmonic 

oscillator in both the central region and the tails. After calculating the energy and minimizing with respect to 𝑎 

[16], we obtain: 

𝐸Rational = 0.529ℏ𝜔  … (22)  

This result is much closer to the exact ground state energy, demonstrating the importance of choosing a 

flexible trial wavefunction [17], [20]. 

 

2.2 Discussion of Trial Wavefunction Selection 

The choice of trial wavefunctions is critical to the success of the variational principle, as the accuracy of 

the energy estimates depends strongly on how well the trial wavefunction captures the system's physical 

characteristics [21]-[23]. In this study, we considered four trial wavefunctions-Gaussian, Exponential, Lorentzian, 

and Rational-each with distinct features that align with specific aspects of the harmonic oscillator system. 
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• Gaussian: The Gaussian wavefunction closely resembles the exact ground state of the harmonic oscillator, 

making it an ideal candidate. Its symmetry and rapid decay in the tails effectively minimize the total 

energy, as demonstrated by its performance across all parameter values. 

• Exponential: The exponential form is suitable for systems with sharp confinement or exponential decay 

in the probability density. However, its cusp at 𝑥 = 0 introduces kinetic energy contributions that make 

it less effective in modeling the smooth ground state of the harmonic oscillator. 

 

 
(a) Energy vs a variation for Gaussian wavefunction            (b) Comparison of Gaussian wavefunction for 

different value of a 

Minimum Energy (ℏω): 0.4991985080027531 ;  

Optimal a: 0.5 ; True Ground State Energy (ℏω): 0.5 

 

Figure 1. Combines the insights from 1(a) and 1( b). Figure 1(a) focuses on the energy optimization process, 

while Figure 1(b) provides a visual representation of the trial wavefunction's variation. 

 

 
                 (a) Wave function vs distance plot                                   (b) Trial wavefunction for different value of a 

Figure 2. Together, Figures 2(a) and 2(b) provide a comprehensive analysis of the trial wavefunctions' behavior. 

Figure 2(a) focuses on the spatial variation of the wavefunctions, while Figure 2(b) examines how the parameter 

𝑎 influences these forms. 

• Lorentzian: The Lorentzian wavefunction is better suited for systems with slower decay or long-range 

interactions. Its broader tails lead to higher potential energy contributions, making it less accurate for 

the harmonic oscillator. 
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• Rational: The rational wavefunction offers a balance between flexibility in the central region and 

extended tails. This adaptability allows it to approximate the ground state energy with relatively high 

accuracy, despite its more complex functional form. 

The selection of these wavefunctions was based on their ability to represent various features of quantum 

systems, such as symmetry, decay rates, and spatial flexibility. While other trial forms could be explored, these 

four provide a diverse set of characteristics to highlight the strengths and limitations of the variational method. 

Future work could extend this analysis by considering hybrid or adaptive trial wavefunctions to further enhance 

the accuracy of energy estimates. 

This figure 2 (a) illustrates the spatial behavior of the wavefunctions as a function of distance for different 

trial forms. The Gaussian wavefunction demonstrates symmetric decay, consistent with the harmonic oscillator's 

exact ground state wavefunction. The Lorentzian wavefunction shows broader tails, representing systems with 

slower decay, while the Rational wavefunction balances central peak behavior with extended tails. This plot 

highlights the qualitative differences in how each trial wavefunction models the harmonic oscillator's ground 

state.The figure 2 (b) compares the trial wavefunctions for a specific parameter value ( 𝑎 = 1 ) to analyze their 

spatial characteristics. The Gaussian wavefunction exhibits rapid and symmetric decay, the Lorentzian form 

demonstrates broader spatial coverage, and the Rational function provides an intermediate decay pattern. These 

differences illustrate how functional form affects the probability distribution and energy minimization. This 

combined analysis emphasizes the importance of selecting trial wave functions that align with the physical 

properties of the system and demonstrates the impact of functional form and parameter selection on the accuracy 

of the variational principle [24],[25]. 

 

2.3 Computational Implementation 

Algorithm: Estimating Ground State Energy Using Variational Method 

1. Define Constants: 

• Set natural units: ℏ = 1, 𝜇 = 1, 𝑘 = 1. 

• Compute angular frequency: 𝜔 = √(k/𝜇). 

2. Construct 𝑥-domain: 

• Create a high-resolution spatial grid: 𝑥 ∈ [−3000,3000] with 5 million points. 

3. Define Trial Wavefunctions: 

• 𝜓1(𝑥) = 𝑒−𝑎|𝑥| 

• 𝜓2(𝑥) =
1

𝑥2+𝑎
 

• 𝜓3(𝑥) =
1

(1+𝑎𝑥2)2 

• 𝜓4(𝑥) = 𝑒−𝑎𝑥2
 

• Hybrid functions: 

𝜓hybrid1 = 𝜓1 + 𝜓4

𝜓hybrid 2 = 𝜓2 + 𝜓3
 

4. Normalize Wavefunction: 

• Compute normalization constant: 

𝑁 = √∫  |𝜓(𝑥)|2𝑑𝑥 

• Normalize each wavefunction: 

𝜓norm (𝑥) = 𝜓(𝑥)/𝑁 

5. Define Operators: 

• Kinetic energy: 

𝑇[𝜓] = −
1

2

𝑑2𝜓

𝑑𝑥2
 

• Potential energy: 

𝑉[𝜓] =
1

2
𝑥2𝜓(𝑥) 

6. Energy Functionals: 

• Compute kinetic energy: 

𝑇 =
∫  𝜓𝑇|𝜓|𝑑𝑥

∫  𝜓2𝑑𝑥
 

• Compute potential energy: 
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𝑉 =
∫  𝜓𝑉[𝜓]𝑑𝑥

∫  𝜓2𝑑𝑥
 

• Total energy: 

𝐸 = 𝑇 + 𝑉 

7. Optimization Loop: 

• For each trial wavefunction: 

• Vary parameter 𝑎 ∈ [0.1,2.0] (100 values) 

• Compute and store 𝑇, 𝑉, 𝐸 for each 𝑎 

• Find 𝑎opt  that minimizes 𝐸(𝑎) 

8. Comparison: 

• Compare minimum energy 𝐸min with exact result 𝐸0 =
1

2
ℏ𝜔 

• Tabulate: Wavefunction, 𝐸min𝑎opt 𝐸0 

9. Visualization: 

• Plot 𝑇(𝑎), 𝑉(𝑎), 𝐸(𝑎) for each wavefunction 

• Show exact energy as horizontal line 

• Display comparison table below plots 

 

 

 

We implemented the variational method using Python, an open-source programming language widely 

used for scientific computing. Python's libraries, such as NumPy and SciPy, 
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Figure 3. Variation of Kinetic Energy, Potential Energy, and Total Energy vs. Parameter 𝑎. 

provide efficient tools for numerical integration and optimization, which are essential for minimizing the 

expectation value of the Hamiltonian. 

The code is structured as follows: 1. Define the trial wavefunction and its parameters. 2. Set up the 

Hamiltonian and calculate the energy expectation value. 3. Use optimization techniques to minimize the energy 

with respect to the variational parameters. 4. Plot the resulting wavefunctions and energies. 

This computational approach provides a hands-on method for students and researchers to explore 

quantum mechanics. It also allows for easy extension to more complex systems, such as multi-dimensional 

oscillators or systems with anharmonic potentials. 

 

2.3.1 Significance of Figure 3 in Evaluating Trial Wavefunctions 

Figure 3 illustrates the variation of kinetic energy, potential energy, and total energy as functions of the 

parameter 𝑎 for different trial wavefunctions. This figure plays a critical role in understanding how these energy 

components contribute to the total energy and provides key insights into the behavior of trial wavefunctions under 

the variational principle. 

The kinetic energy generally increases with 𝑎, reflecting the narrowing of the wavefunction, while the 

potential energy decreases due to reduced spatial extent. The interplay between these components determines the 

total energy, which reaches a minimum at the optimal parameter value 𝑎opt . This minimum represents the best 

approximation of the ground state energy for the given trial wavefunction[26]. 

By comparing these energy variations across trial wavefunctions, Figure 3 highlights their intrinsic 

differences: - The Gaussian wavefunction exhibits a sharp and well-defined minimum, indicating its efficiency in 

balancing kinetic and potential energy contributions. This sharpness reflects the Gaussian's close resemblance to 
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the exact ground state of the harmonic oscillator. - The Lorentzian wavefunction displays a broader energy curve, 

demonstrating lower snsitivity to 𝑎. Its broader tails contribute to higher potential energy, resulting in a less 

accurate energy estimate compared to the Gaussian. - The Exponential wavefunction and Rational wavefunction 

show intermediate behavior, with their energy minima less pronounced than that of the Gaussian but still providing 

valuable insights into their adaptability to the system. 

 

 

 
Figure 4. Variation of Kinetic Energy, Potential Energy, and Total Energy as a function of the parameter 𝑎, 

calculated with a resolution of 𝑥 values in the range [−5000,5000] using 500,000 points. 

 

The significance of Figure 3 lies in its ability to reveal how well each trial wavefunction captures the 

balance of energy components fundamental to the harmonic oscillator. By visualizing these trends, it becomes 

evident which wavefunctions are better suited for approximating the ground state energy and why parameter 

optimization is crucial for improving accuracy. Additionally, the figure underscores the role of functional form in 

influencing the trial wavefunction's ability to model the harmonic oscillator effectively.  

In summary, Figure 3 not only demonstrates the contributions of kinetic and potential energy but also 

provides a comparative framework for evaluating the performance of different trial wavefunctions, serving as a 

foundation for the subsequent analysis and optimization. 

In fig 4 ,the high resolution minimizes numerical errors in both integrals and derivatives. Similarly, the 

parameter 𝑎 was sampled with 100 evenly spaced points in the range [0.1, 2.0], ensuring smoother energy curves 

and precise identification of the optimal value of 𝑎. The numerical results align closely with theoretical 

calculations. Increasing the resolution of 𝑥 and the sampling of 𝑎 yields even more accurate results, closely 
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matching theoretical predictions, though at the cost of increased computational time. The calculations were 

performed on a laptop with a 4 GB Intel i3 configuration, taking approximately 3.45 seconds to execute [27],[28]. 

 

 

 

Figure 5. Comparison of Gaussian,Exponential, Lorentzian, and Rational trial wavefunctions using their optimal 

parameters. This demonstrates the relative accuracy and suitability of each wavefunction for the 1D harmonic 

oscillator.Each trial wavefunction is plotted using its respective optimized parameter 𝑎opt . 

Figure 5 illustrates the trial wavefunctions computed with their respective optimal parameters. Gaussian 

and Exponential wavefunctions closely resemble the true ground state, while the Lorentzian and Rational forms 

offer extended spatial coverage, suitable for complex potential landscapes. The optimal parameters were 

determined to minimize the variational energy. This comparison demonstrates how parameter optimization 

enhances the accuracy of each trial wavefunction in approximating the ground state. The Gaussian and Exponential 

wavefunctions closely resemble the true ground state, exhibiting symmetric and rapid decay. In contrast, the 

Lorentzian wavefunction shows broader tails, suitable for systems with extended spatial coverage or slower decay. 

The Rational wavefunction balances central be-havior and extended tails, providing flexibility in capturing the 

harmonic oscillator's ground state characteristics. This figure highlights the importance of optimizing the 

parameter 𝑎 for each trial form and illustrates the relative strengths of different wavefunctions in the variational 

method for ground state energy estimation. The figure 6(a) shows the energy estimates for different trial 

wavefunctions (Gaussian, Exponential, Lorentzian, and Rational) at a fixed parameter value of 𝑎 = 0.5. The 

results demonstrate how each trial wavefunction performs under identical conditions. The Gaussian wavefunction 

provides the closest approximation to the true ground state energy, while other forms, such as the Lorentzian, 

exhibit higher energy values due to their slower decay or broader spatial behavior. The figure 6(b) highlights the 

deviation of the estimated energy from the true ground state energy for each trial wavefunction at 𝑎 = 0.5. It 

provides a direct comparison of the accuracy of each form, emphasizing the impact of wavefunction shape on the 

variational energy. The Gaussian wavefunction demonstrates the smallest deviation, followed by the Rational 

form, with the Lorentzian showing the largest deviation. 

 

2.3.2 Analysis of Energy Comparisons: Figures 6(a) and 6(b) 

Figures 6(a) and 6(b) provide critical insights into the performance of different trial wavefunctions by 

comparing their estimated energies and deviations from the true ground state energy at a fixed parameter value 

𝑎 = 0.5. These comparisons highlight the intrinsic characteristics of each wavefunction and their ability to 

approximate the ground state of the harmonic oscillator[29].  

In Figure 6(a), the Gaussian wavefunction demonstrates the closest approximation to the true ground state 

energy, reflecting its symmetric shape and rapid decay, which closely match the physical properties of the 

harmonic oscillator's exact ground state. In contrast, the Lorentzian and Exponential wavefunctions exhibit higher 
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energy estimates, primarily due to their broader tails. These tails contribute significantly to the potential energy, 

leading to less accurate results. The Rational wavefunction achieves a balance, with its flexible form providing a 

relatively close estimate to the true energy while retaining broader spatial coverage compared to the Gaussian 

form. 

Figure 6(b) further quantifies the deviations of each trial wavefunction's energy estimate from the true 

ground state energy. The smallest deviation is observed for the Gaussian wavefunction, reinforcing its 

effectiveness in minimizing energy. The Rational wavefunction follows, showing moderate deviation due to its 

ability to balance behavior near the origin and at larger distances. However, the Lorentzian and Exponential forms 

exhibit the largest deviations. For the Lorentzian, this is attributed to its slower decay and broader tails, which 

increase the overall energy. The Exponential wavefunction's sharp cusp at 𝑥 = 0 introduces higher kinetic energy 

contributions, further amplifying its deviation. These deviations underscore the importance of selecting a trial 

wavefunction that aligns closely with the physical properties of the harmonic oscillator. While fixed- 𝑎 

comparisons offer a baseline for evaluating the intrinsic behavior of each wavefunction, optimization of the 

parameter 𝑎 (as shown in later figures) refines these estimates and highlights the strengths and limitations of each 

form. Together, Figures 6(a) and 6(b) emphasize the trade-offs between simplicity, flexibility, and accuracy in 

trial wavefunction selection. These figures underscore the importance of selecting appropriate trial wavefunctions 

and optimizing their parameters to achieve accurate ground state energy estimates. 

In fig 7 each wavefunction is plotted using its respective optimal parameter 𝑎opt , which minimizes the 

variational energy.The results demonstrate the accuracy of each trial wavefunction in approximating the ground 

state energy of the harmonic oscillator. The Gaussian wavefunction closely matches the exact energy, showing its 

effectiveness in modeling systems with high symmetry. The Exponential and Rational wavefunctions also perform 

well, but with slightly higher energy estimates. In contrast, the Lorentzian wavefunction exhibits a larger deviation 

from the exact energy due to its broader tails, which contribute to higher energy components.This figure highlights 

the significance of parameter optimization and the choice of trial wavefunction in the variational method. It 

provides insights into the strengths and limitations of each wavefunction for estimating the ground state energy In 

fig 8 the visualization highlights how each wavefunction behaves in the spatial domain, including their decay 

properties and central peak behavior. It provides an intuitive understanding of the inherent differences among the 

Gaussian, Lorentzian, Rational, and Exponential trial wavefunctions. The figure also illustrates how these 

wavefunctions contribute to the variational principle, particularly in regions of high and low probability density. 

This graphical comparison complements the numerical results by emphasizing the suitability of each trial form for 

approximating the ground-state wavefunction of the system under study. 

 It is reasonable to compare different trial wavefunctions using the same value of 𝑎 as a baseline for 

consistency. The parameter 𝑎 serves as a scaling factor, and keeping it constant allows for an unbiased comparison 

of the intrinsic shapes and decay behaviors of the trial wavefunctions.However, to fully assess the performance of 

each trial wavefunction, it is also necessary to optimize 𝑎 for each form. This optimization ensures that the 

variational principle provides the lowest possible energy estimate for each wavefunction. While the same 𝑎 offers 

a direct visual comparison, adding curves for each wavefunction under their respective optimal 𝑎 would provide a 

more comprehensive evaluation of their effectiveness. 

 

 
(a) Comparison of energy for a = 0.5                                       (b) Comparison of Energy deviation for a = 0.5 

 

Figure 6. Together, Figures 6(a) and 6(b) offer a comprehensive analysis of the performance of different trial 

wavefunctions at a fixed parameter value ( 𝑎 = 0.5 ). Figure 6(a) focuses on the absolute energy values, while 

Figure 6(b) quantifies the deviations from the exact energy.  
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Figure 7.Illustrates the optimized energy estimates for the Gaussian, Exponential, Lorentzian, and Rational trial 

wavefunctions. 

 
Figure 8. serves to visually compare the shapes of the different trial wavefunctions under a common set of 

parameters. 

2.3.3 Numerical Results Consistency and Interpretations 

For example, the Gaussian wavefunction achieves the closest approximation to the true energy due to its 

symmetry and rapid decay, which align well with the harmonic oscillator's exact ground state. The Rational 

wavefunction also performs well, as its adaptable shape captures both central and tail behaviors effectively, though 

its more complex structure results in slight deviations. The Lorentzian and Exponential wavefunctions, however, 

exhibit broader tails and sharper features, respectively, leading to higher energy estimates. These deviations 

emphasize the importance of symmetry and decay properties in determining the accuracy of energy estimates. 

 

2.3.4 Technical Implementation Details 

The computational implementation uses Python's NumPy and SciPy libraries for numerical integration 

and parameter optimization. To ensure numerical precision, the following measures were adopted: - The range of 

the spatial variable 𝑥 was extended to [−5000,5000], with a resolution of 500,000 points, to minimize truncation 

errors during integration. - The parameter 𝑎 was varied in the range [0.1, 2.0] with 100 evenly spaced points, 

ensuring a smooth energy curve and precise identification of 𝑎opt . - Numerical differentiation was performed using 

np.gradient, which employs a robust central difference scheme, reducing errors in kinetic energy calculations. The 

wavefunctions were normalized to satisfy ∫  |𝜓(𝑥)|2𝑑𝑥 = 1, ensuring physical accuracy and reliable computation 

of expectation values. Numerical differentiation was improved by employing numpy's np.gradient, which provides 

a robust and accurate central difference scheme for calculating derivatives, reducing errors in kinetic energy 
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evaluations. Results were compared against the exact groundstate energy of the harmonic oscillator, 𝐸exact =
1

2
ℏ𝜔, 

to verify accuracy. Among the trial wavefunctions, the Gaussian form 𝜓4(𝑥) = 𝑒−𝑎𝑥2
 was found to closely match 

the exact energy, with the optimal parameter 𝑎opt = 0.5 yielding 𝐸(𝑎opt ) ≈ 0.5ℏ𝜔. These improvements ensure 

more accurate results and confirm the Gaussian wavefunction as the most suitable for representing the ground state 

of the harmonic oscillator. 

These high-resolution settings enhance the reliability of the results but come with increased 

computational costs. Further improvements, such as adaptive integration schemes or higher-order differentiation 

methods, could optimize the balance between precision and efficiency [30],[31]. 

 

2.3.5 Purpose of Fixed 𝑎 Comparisons 

In this study, the comparison of trial wavefunctions at a fixed parameter value 𝑎 serves as an important 

baseline for understanding their intrinsic behaviors. While optimizing 𝑎 for each wavefunction yields the most 

accurate energy estimates, the fixed- 𝑎 approach allows for a consistent evaluation of the qualitative characteristics 

of different trial wavefunctions without introducing parameter-specific biases. 

By maintaining a common value for 𝑎, we isolate and compare the fundamental shapes and decay 

properties of the wavefunctions, independent of optimization. This comparison provides insights into how well 

each wavefunction aligns with the physical properties of the harmonic oscillator under identical conditions. For 

instance, the Gaussian wavefunction 

 

 
Figure 9. Figures 9(a) and 9(b) collectively analyze how the estimated energies of different trial wavefunctions 

vary with the parameter 𝑎. exhibits rapid and symmetric decay, closely resembling the true ground state, while 

the Lorentzian wavefunction demonstrates broader tails, indicative of systems with slower decay. 

 

The figure 9(a) compares the estimated energies for different trial wavefunctions (Exponential, 

Lorentzian, Rational, and Gaussian) at a fixed parameter value of 𝑎 = 1.0. The Gaussian wavefunction provides 

the closest approximation to the true ground state energy, as indicated by the dashed line. The Rational 

wavefunction exhibits the largest deviation.the larger deviation of the Rational wavefunction at 𝑎 = 1 arises from 

its slower decay, which causes it to overestimate the spatial extent of the system, leading to higher energy estimates 

compared to the true ground state energy. The Gaussian wavefunction, with its exponential decay, more closely 

matches the true ground state wavefunction of the harmonic oscillator, yielding a more accurate energy estimate. 

The comparison emphasizes the importance of the trial wavefunction's form in achieving accurate energy 

estimates. The numerical results presented in Table 1 and Figure 5 demonstrate consistency between the optimal 

parameters ( 𝑎opt  ) and the corresponding energy estimates for each trial wavefunction. The deviations observed 

between the estimated energies and the true ground state energy can be directly linked to the physical 

characteristics of the wavefunctions. The figure 9(b) compares the estimated energies for different trial 

wavefunctions at 𝑎 = 0.1. The smaller value of 𝑎 leads to broader spatial coverage for each wavefunction, which 

impacts the energy estimates. As shown, the Gaussian wavefunction 𝜓4(𝑥, 𝑎) = 𝑒−𝑎𝑥2
 produces an energy 

estimate closest to the true ground state energy, indicated by the dashed line. On the other hand, the exponential 

wavefunction 𝜓1(𝑥, 𝑎) = 𝑒−𝑎|𝑥| shows the largest deviation from the true value. The trends align with Figure 9(a), 

but the reduced 𝑎 value magnifies the differences in accuracy. In fig 9 by comparing these results for different 

fixed 𝑎 values, the figures emphasize the importance of parameter tuning and the adaptability of the trial 

wavefunction to the system's physical properties. The analysis further highlights that the Gaussian wavefunction 

consistently provides the most accurate energy estimate across different parameter values.The exponential trial 
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wavefunction 𝜓1(𝑥, 𝑎) = 𝑒−𝑎|𝑥| shows a large deviation for 𝑎 = 0.1 due to several reasons: 1. For smaller 𝑎, the 

wavefunction becomes broader, making it less effective at approximating the concentrated ground state. 2. The 

cusp at 𝑥 = 0 in 𝜓1(𝑥, 𝑎) leads to a discontinuous derivative, increasing the kinetic energy. 3. The exponential 

form poorly captures the Gaussian shape of the true harmonic oscillator ground state. 4. The parameter 𝑎 = 0.1 is 

too small to localize the wavefunction effectively near 𝑥 = 0. 5. These factors collectively result in an 

overestimated energy compared to other trial wavefunctions. 

In contrast, the Gaussian wavefunction 𝜓4(𝑥, 𝑎) = 𝑒−𝑎𝑥2
 closely matches the true ground state and 

minimizes the energy. Furthermore, the fixed- 𝑎 approach highlights the limitations and strengths of each 

wavefunction form, offering a clear visual and quantitative baseline before incorporating parameter optimization. 

Subsequent optimization steps, as shown in Figures 5 and 7 , refine these insights by minimizing the total energy 

and determining the optimal parameter 𝑎opt . Together, these approaches provide a comprehensive framework for 

evaluating trial wavefunctions in the context of the variational principle. 

 

 

3. RESULTS AND DISCUSSION 

The application of the variational principle with various trial wavefunctions reveals critical insights into 

the choice and performance of these functions in estimating the ground state energy of a quantum harmonic 

oscillator. 

The Gaussian wavefunction, which closely mirrors the exact ground state solution, yields an energy 

estimate of E=0.5000 ℏω , aligning well with the theoretical value. This agreement underscores the power of 

selecting trial functions that reflect the symmetry and physical behavior of the system. However, due to its fixed 

functional form, even the Gaussian slightly overestimates the energy, a typical limitation observed in variational 

methods. 

In contrast, the Lorentzian wavefunction, though mathematically valid and satisfying boundary 

conditions, performs poorly. Its slow decay leads to increased contributions from the tails, resulting in a higher 

energy estimate. This finding aligns with earlier studies, such as Trail (2009),[19] which demonstrate that trial 

wavefunctions exhibiting long-range tails can lead to inflated energy calculations due to extended probability 

densities at larger distances. 

The Exponential wavefunction, known for its sharp features, also yields a higher energy compared to 

the Gaussian. This suggests that abrupt spatial behavior is less favorable for systems governed by smooth, 

harmonic potentials. Previous theoretical work has similarly indicated that rapid decays can produce inaccuracies 

in kinetic energy estimations due to discontinuities in derivatives. 

Among the tested functions, the Rational wavefunction offers the best performance with an energy 

estimate of E=0.529 ℏω, deviating by only ~6% from the exact value. This improved accuracy likely stems from 

its flexible form, which effectively captures both central and asymptotic behavior. Unlike the Gaussian, the 

Rational wavefunction is capable of adjusting its shape more dynamically, balancing the behavior near the origin 

and at infinity. Such adaptability has been previously emphasized in variational literature as a key factor in 

achieving more accurate energy approximations. 

Despite these promising results, the present analysis lacks a detailed comparison to other established 

variational studies or theoretical frameworks beyond basic function performance. For instance, comparing the 

effectiveness of the Rational wavefunction with hybrid or parameterized trial functions from past research (e.g., 

basis set expansions or neural trial functions) would provide deeper insight. Furthermore, a more rigorous 

interpretation of the numerical deviations—particularly in relation to physical expectations like symmetry, 

normalization, and smoothness—would enhance the discussion's depth. 

In conclusion, while the Gaussian remains a reliable choice for systems with high symmetry, the Rational 

wavefunction’s flexibility makes it a compelling alternative, especially for complex systems. Future research 

should explore combinations of trial functions or machine-learned forms to further improve accuracy. Integrating 

these approaches with insights from previous studies could significantly advance the utility of variational 

techniques in quantum mechanics. 

 

3.1 Parameter Sensitivity 

The accuracy of the variational principle heavily depends on the choice of the variational parameter 𝑎, as 

it determines the shape and behavior of the trial wavefunction. To investigate this sensitivity, we analyze how 

variations in 𝑎 affect the estimated ground state energy for different trial wavefunctions. The parameter 𝑎 not only 

affects the energy but also alters the spatial profile of the trial wavefunction. For instance, in the Gaussian trial 

wavefunction, increasing 𝑎 results in a narrower wavefunction, while decreasing 𝑎 broadens it. This flexibility 

allows the Gaussian form to closely match the true ground state wavefunction near the optimal 𝑎opt. 
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Conversely, for the exponential and Lorentzian wavefunctions, changes in 𝑎 lead to significant deviations 

from the expected shape, particularly in regions of high probability density. This mismatch is evident in the higher 

energy estimates obtained for these forms, especially when 𝑎 deviates from 𝑎opt . 

 

3.2 Optimal 𝑎 for Different Trial Wavefunctions 

Table 1 summarizes the optimal 𝑎opt  and the corresponding energy estimates for each trial wavefunction. 

The Gaussian trial wavefunction achieves the closest approximation to 𝐸0, while the Lorentzian and exponential 

forms show higher deviations due to their less adaptable shapes. 

 

Table 1. Optimal parameters and energy estimates for trial wavefunctions. 

Trial Wavefunction 𝐚opt  𝐄(𝐚opt ) 

Gaussian 0.5 0.500ℏ𝜔 

Exponential 0.707 0.707ℏ𝜔 

Lorentzian 0.707 0.707ℏ𝜔 

Rational 0.529 0.529ℏ𝜔 

 

Table 2. Comparison of theoretical predictions and numerical results for trial wavefunctions. The 

numerical results can be enhanced with the theoretical insights discussed in Technical Implementation Details 

section. 

 

Table 2: Comparison of theoretical predictions and numerical results for trial wavefunctions. 

Wavefunction 𝐄numerical  𝐚numerical  𝐄theoretical  𝐚theoretical  

𝜓1(𝑥) = 𝑒−𝑎|𝑥| 0.7063ℏ𝜔 0.85 0.707ℏ𝜔 0.707 

𝜓2(𝑥) =
1

𝑥2 + 𝑎
 

0.7071ℏ𝜔 0.71 0.707ℏ𝜔 0.707 

𝜓3(𝑥) =
1

(1 + 𝑎𝑥)2
 

0.5293ℏ𝜔 0.37 0.529ℏ𝜔 0.529 

𝜓4(𝑥) = 𝑒−𝑎𝑥2
 0.5000ℏ𝜔 0.50 0.500ℏ𝜔 0.500 

 

The analysis highlights the importance of carefully selecting and optimizing the parameter 𝑎. While the 

Gaussian trial wavefunction demonstrates high sensitivity and accuracy, other forms like the Lorentzian and 

exponential are less sensitive but provide less accurate energy estimates. This underscores the critical role of 

parameter tuning in the application of the variational principle. 

 

3.3 Hybrid Trial Wavefunctions in the Variational Method 

In the variational method, the accuracy of the estimated ground state energy depends heavily on the choice 

of trial wavefunction. A well-chosen trial wavefunction should ideally capture the physical features of the system, 

particularly in regions where the system's probability distribution is significant. However, in many cases, no single 

wavefunction can accurately represent all the relevant characteristics of a quantum system, especially for complex 

potentials or when dealing with long-range interactions. To address this challenge, hybrid trial wavefunctions, 

which combine the strengths of multiple existing wavefunctions, offer a flexible and effective approach. 

 

3.4 Motivation for Hybrid Wavefunctions 

The goal of using hybrid wavefunctions is to create trial wavefunctions that combine complementary 

features of individual wavefunctions, thereby improving the approximation of the true ground state. For example, 

some wavefunctions may be better at capturing the behavior of the system near the origin, while others are better 

suited for describing the system's longrange behavior. By combining these features, hybrid wavefunctions can 

provide a more accurate overall description of the quantum system. 

In this work, we explore two specific hybrid trial wavefunctions constructed from well-known trial 

wavefunctions for the one-dimensional (1D) harmonic oscillator. The 1D harmonic oscillator is an idealized 

quantum system where the exact ground state energy is known, making it an excellent test case for evaluating the 

performance of different trial wavefunctions. 
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Figure 10. Comparison of Kinetic Energy, Potential Energy, Total Energy, and Exact Energy as functions of the 

variational parameter 𝑎 for different trial wavefunctions, including individual and hybrid forms, for the 1D 

harmonic oscillator. The table below summarizes the minimum energies, optimal 𝑎 values, and the exact energy 

for each wavefunction making it a suitable candidate for approximating systems with both localized and 

extended features. 

 

3.5 Constructing the Hybrid Wavefunctions 

Two hybrid trial wavefunctions were constructed by combining pairs of individual wavefunctions, each 

chosen for their distinct features: 

 

Hybrid 1: 𝜓hybrid 1(𝑥) = 𝜓1(𝑥) + 𝜓4(𝑥) 

−𝜓1(𝑥) = 𝑒−𝑎|𝑥| : The exponential decay of this wavefunction is effective in capturing the behavior near the 

origin of the system. It provides a sharp central decay, which is useful for systems where the probability 

distribution is concentrated around the origin. 

 −𝜓4(𝑥) = 𝑒−𝑎𝑥2
 : The Gaussian form is known to closely approximate the exact ground state of the harmonic 

oscillator. It decays smoothly at large distances and is ideal for systems that exhibit rapid decay at the tails. 

Combination: The hybrid wavefunction 𝜓hybrid1 (𝑥) combines the sharp central behavior of 𝜓1(𝑥) with the 

smooth, Gaussian decay of 𝜓4(𝑥), making it a good candidate for approximating the harmonic oscillator's 

ground state across both short and long distances.  

Hybrid 2: 𝜓hybrid 2(𝑥) = 𝜓2(𝑥) + 𝜓3(𝑥) 

−𝜓2(𝑥) =
1

𝑥2+𝑎
 : The Lorentzian form captures more localized features and can be effective for describing 

systems where interactions are confined to a particular region. It decays more slowly than the exponential 

function, providing flexibility in representing systems with extended localized behavior.  
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−𝜓3(𝑥) =
1

(1+𝑎𝑥2)2 : The rational form represents a broader tail compared to the Gaussian, making it useful 

for systems with long-range interactions. 

Combination: The hybrid wavefunction 𝜓hybrid 2(𝑥) combines the localized behavior of 𝜓2(𝑥) with the 

extended tail behavior of 𝜓3(𝑥). 

 

3.6 Physical Significance of Hybrid Wavefunctions 

The primary advantage of hybrid wavefunctions lies in their ability to represent a broader range of 

physical features than individual trial wavefunctions. In particular, the hybrid wavefunctions we explore combine 

the sharp central decay of exponential and rational forms with the smooth decay of Gaussian and Lorentzian 

functions. This combination allows for more accurate approximations of the ground state energy in cases where 

different parts of the wavefunction have significantly different characteristics. 

 

Hybrid 1 captures both sharp central decay and smooth tail decay, which is beneficial for systems with a 

welldefined central peak but a need for smooth decay at large distances. 

Hybrid 2 captures both localized behavior and longrange interactions, which is particularly useful for systems 

that are confined to a certain region but still exhibit extended tails or long-range behavior. 

 

These hybrid forms are expected to outperform individual trial wavefunctions in terms of energy 

estimation, as they combine the complementary strengths of each individual wavefunction. The flexibility inherent 

in these combinations also provides a more accurate representation of the ground state, particularly in cases where 

the system exhibits more complex behavior than can be captured by simpler wavefunctions. In fig 10 ,the plots 

demonstrate the performance of individual and hybrid trial wavefunctions in approximating the ground state 

energy of the 1D harmonic oscillator using the variational method. The kinetic energy plot (top left) shows the 

dependence of energy on 𝑎, where hybrid wavefunctions exhibit smoother variations and better approximations 

compared to individual ones. In the potential energy plot (top right), hybrid wavefunctions effectively balance 

central and long-range behaviors, showing reduced energy at optimal 𝑎 values. The total energy plot (bottom left) 

highlights that hybrid wavefunctions, particularly Hybrid 1 and Hybrid 2, provide closer approximations to the 

exact energy ( 0.5 a.u.) than individual wavefunctions, as they combine complementary features like sharp central 

decay and smooth tails. The exact energy subplot (bottom right) serves as a reference for the ground state energy, 

with the hybrids approaching this value most closely. The accompanying table confirms that hybrid wavefunctions 

achieve the lowest energy estimates with optimized parameters, validating their superiority over individual 

wavefunctions in capturing the physical characteristics of the quantum system. 

 

3.7 Benefits in the Variational Principle 

In the variational principle, the wavefunction is optimized to minimize the energy, with the expectation 

that the trial wavefunction provides an upper bound to the true ground state energy. Hybrid wavefunctions, by 

incorporating different functional forms, allow for better optimization, as they capture a wider range of possible 

behaviors. This leads to improved energy estimates, making the variational method more accurate and effective in 

a wider variety of systems. 

Improved Accuracy: By combining different trial wavefunctions, the hybrid approach minimizes the 

shortcomings of individual wavefunctions, improving the overall accuracy of the energy estimate. 

Flexibility: Hybrid wavefunctions allow for better adaptation to different systems, particularly those that 

involve more complex or anharmonic potentials. Their flexibility makes them valuable in applications beyond 

the harmonic oscillator, such as anharmonic oscillators or systems with long-range interactions. 

 

3.8 Conclusion on Hybrid Trail wave function 

Hybrid trial wavefunctions present a promising approach to improving the variational method by 

combining the strengths of different wavefunctions to better approximate the true ground state. The two hybrid 

wavefunctions discussed here, Hybrid 1 and Hybrid 2, demonstrate the effectiveness of this approach for the 1D 

harmonic oscillator and highlight the potential for more accurate energy estimates in quantum systems with 

varying physical behaviors. These hybrid wavefunctions provide a more flexible and comprehensive way to 

approach the variational principle, particularly in complex systems where individual wavefunctions may fall short. 

Future work may explore additional hybrid combinations and their applications to more intricate quantum systems, 

such as anharmonic oscillators or multi-dimensional systems. 

 

3.9 Application to Anharmonic Oscillators 

To further demonstrate the utility of the variational method, we applied it to the anharmonic oscillator 

governed by the potential: 

𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2 + 𝜆𝑥4 
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Where the anharmonicity parameter 𝜆 introduces nonlinearity beyond the harmonic approximation. This 

system serves as an excellent benchmark to explore the performance of the variational principle when applied to 

non-ideal quantum systems. 

A range of trial wavefunctions, including Gaussian and polynomial forms, were employed to approximate 

the ground state energy. While the Gaussian wavefunction provided reasonable estimates, its accuracy diminished 

as 𝜆 increased, reflecting the greater complexity of the anharmonic system. To overcome these challenges, hybrid 

wavefunctions, incorporating anharmonic contributions, were developed. These hybrid forms demonstrated 

superior performance, offering improved energy estimates and capturing the anharmonic effects more effectively. 

 

Key findings are summarized as follows: 

Kinetic Energy ( 𝑇(𝑎) ): The kinetic energy exhibits notable variations as a function of the variational 

parameter 𝑎, depending on the chosen trial wavefunction. This behavior reflects the different shapes and 

gradients of the wavefunctions and their respective sensitivity to changes in 𝑎. 

Potential Energy (𝑉(𝑎)) : The potential energy is dominated by the anharmonic term 𝜆𝑥4 at small 𝑎, leading 

to steep increases for simpler wavefunctions. More sophisticated trial forms better mitigate these effects. 

Total Energy (𝐸(𝑎)) : The total energy, 𝐸(𝑎) = 𝑇(𝑎) + 𝑉(𝑎), was minimized to determine the optimal 

parameter 𝑎. Hybrid wavefunctions consistently achieved lower minimum energies ( 𝐸min ) compared to 

simpler trial wavefunctions, indicating enhanced accuracy in capturing the anharmonicity. 

 

The panels fig 11 illustrate the kinetic, potential, and total energy as functions of the variational parameter 

𝑎 for various trial wavefunctions. The top-left panel shows the kinetic energy 𝑇(𝑎) versus 𝑎, indicating different 

contributions for the tested wavefunctions. The top-right panel displays the potential energy 𝑉(𝑎), which 

dominates at smaller 𝑎 due to the anharmonic term 𝜆𝑥4. The bottom-left panel presents the total energy 𝐸(𝑎) =
𝑇(𝑎) + 𝑉(𝑎), where the minimum energy for each wavefunction is highlighted. The bottom-right panel 

summarizes the minimum energy and optimal 𝑎 values for each wavefunction, showing that hybrid wavefunctions 

yield better approximations compared to simple trial forms . The results underscore the necessity of tailoring trial 

wavefunctions to match the system's complexity. Hybrid forms, which explicitly incorporate anharmonic terms, 

demonstrated marked improvements over traditional Gaussian or polynomial functions. By leveraging the inherent 

flexibility of the variational principle, this approach provides a powerful framework for addressing complex 

quantum systems, such as anharmonic oscillators. 

This analysis paves the way for more accurate energy approximations and highlights the potential of 

hybrid wavefunctions in capturing the essential physics of systems with significant anharmonicity.This study 

highlights the flexibility and adaptability of the variational approach, showcasing its potential to model 

increasingly complex quantum systems [32]. 
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Figure 11. Variational Analysis of the Anharmonic Oscillator with 𝜆 = 0.1 

 

 

4. CONCLUSION 

In this study, we demonstrated the successful application of the variational principle to the one-

dimensional harmonic oscillator, emphasizing the impact of trial wavefunctions on energy estimates. The analysis 

revealed that the choice of trial wavefunction is critical, and its ability to approximate the exact ground state 

influences the precision of energy approximations. Of the individual wavefunctions tested, the Gaussian trial 

wavefunction provided the best approximation due to its close resemblance to the exact ground state wavefunction. 

Hybrid wavefunctions, combining features of Gaussian and other forms, further improved the energy estimates by 

incorporating both localized and long-range characteristics. These findings offer important insights for 

computational quantum mechanics, highlighting that the use of hybrid trial wavefunctions not only increases the 

accuracy of energy estimates but also enhances the versatility of the variational method, making it more adaptable 

to a wider range of quantum systems. This is particularly significant for systems where traditional approaches 

struggle, especially in more complex or higher-dimensional contexts. We recommend that future research expand 

the use of hybrid wavefunctions to multi-dimensional quantum systems and anharmonic potentials, where classical 

trial functions may be inadequate. Moreover, refinement in wavefunction optimization techniques—such as 
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adaptive methods to dynamically adjust parameters—could boost both efficiency and precision. Further 

exploration of hybrid wavefunctions in systems with complex interactions or irregular potentials is also suggested, 

as conventional forms often fail to capture essential quantum behaviors. Overall, this study contributes toward 

advancing robust and efficient applications of the variational method in modeling and understanding complex 

quantum systems. 
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1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9

10 # Define the range for x values with high resolution
11 x = np.linspace (-5000, 5000, 5000000)
12

13 def psi1(a, x):
14 return np.exp(-a * np.abs(x))
15

16 def psi2(a, x):
17 return 1 / (x**2 + a)
18

19 def psi3(a, x):
20 return 1 / (1 + a * x**2) **2
21

22 def psi4(a, x):
23 return np.exp(-a * x**2)
24

25 # Normalize a wave function
26 def normalize_wavefunction(psi , x):
27 norm_factor = np.sqrt(np.trapz(np.abs(psi)**2, x)) #

Integral of |psi(x)|^2
28 return psi / norm_factor # Normalize the wave function
29

30 # Second derivative using a central difference scheme
31 def dfdx(ft, xt):
32 dx = xt[1] - xt[0]
33 return np.gradient(ft, dx)
34

35 # Kinetic energy operator
36 def T_phi(ft, xt):
37 ftp = dfdx(ft , xt)
38 ftpp = dfdx(ftp , xt)
39 return -0.5 * ftpp
40

41 # Potential energy operator
42 def V_phi(ft, xt):
43 return 0.5 * xt**2 * ft
44

45 # Functionals for kinetic and potential energy
46 def T_functional(ft , xt):
47 tphi = T_phi(ft , xt)
48 return np.trapz(ft * tphi , xt) / np.trapz(ft**2, xt)
49

50 def V_functional(ft , xt):
51 vphi = V_phi(ft , xt)
52 return np.trapz(ft * vphi , xt) / np.trapz(ft**2, xt)
53

54 # Define different values of a with higher resolution
55 a_values = np.linspace (0.1, 2.0, 100)
56

57 # Initialize dictionaries for storing energy values
58 trial_wavefunctions = [psi1 , psi2 , psi3 , psi4]
59 labels = [
60 r’$\psi_ {1}(x)␣=␣e^{-a|x|}$’,
61 r’$\psi_ {2}(x)␣=␣\frac {1}{x^2␣+␣a}$’,
62 r’$\psi_ {3}(x)␣=␣\frac {1}{(1␣+␣ax^2) ^2}$’,
63 r’$\psi_ {4}(x)␣=␣e^{-ax^2}$’
64 ]
65

66 # Store energies and optimal parameters
67 min_energy = {}
68 optimal_a = {}
69 T_values = {psi: [] for psi in trial_wavefunctions}
70 V_values = {psi: [] for psi in trial_wavefunctions}
71 E_values = {psi: [] for psi in trial_wavefunctions}
72

73 # Exact energy of the quantum harmonic oscillator ground
state
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74 exact_energy = 0.5 * omega
75

76 # Compute energies for each trial wavefunction
77 for psi in trial_wavefunctions:
78 energies = []
79 for a in a_values:
80 Phi_trial = psi(a, x)
81 Phi_trial_normalized =

normalize_wavefunction(Phi_trial , x) # Normalize
the wave function

82

83 T = T_functional(Phi_trial_normalized , x)
84 V = V_functional(Phi_trial_normalized , x)
85 E = T + V
86

87 T_values[psi]. append(T)
88 V_values[psi]. append(V)
89 E_values[psi]. append(E)
90 energies.append(E)
91

92 # Find minimum energy and corresponding a
93 min_energy[psi] = min(energies)
94 optimal_a[psi] = a_values[np.argmin(energies)]
95

96 colors = [’red’, ’blue’, ’green’, ’purple ’]
97 fig , axs = plt.subplots(2, 2, figsize =(15, 12))
98

99 # Plot Kinetic Energy
100 for i, psi in enumerate(trial_wavefunctions):
101 axs[0, 0]. plot(a_values , T_values[psi], label=labels[i],

color=colors[i])
102 axs[0, 0]. axhline(y=exact_energy , color=’black ’,

linestyle=’--’, label=’Exact␣Energy ’)
103 axs[0, 0]. set_xlabel(’a’)
104 axs[0, 0]. set_ylabel(’Kinetic␣Energy␣($\hbar␣\omega$)’)
105 axs[0, 0]. set_title(’Kinetic␣Energy␣vs␣a’)
106 axs[0, 0]. legend(loc=’upper␣right ’)
107

108 # Plot Potential Energy
109 for i, psi in enumerate(trial_wavefunctions):
110 axs[0, 1]. plot(a_values , V_values[psi], label=labels[i],

color=colors[i])
111 axs[0, 1]. axhline(y=exact_energy , color=’black ’,

linestyle=’--’, label=’Exact␣Energy ’)
112 axs[0, 1]. set_xlabel(’a’)
113 axs[0, 1]. set_ylabel(’Potential␣Energy␣($\hbar␣\omega$)’)
114 axs[0, 1]. set_title(’Potential␣Energy␣vs␣a’)
115 axs[0, 1]. legend(loc=’upper␣right ’)
116

117 # Plot Total Energy
118 for i, psi in enumerate(trial_wavefunctions):
119 axs[1, 0]. plot(a_values , E_values[psi], label=labels[i],

color=colors[i])
120 axs[1, 0]. axhline(y=exact_energy , color=’black ’,

linestyle=’--’, label=’Exact␣Energy ’)
121 axs[1, 0]. set_xlabel(’a’)
122 axs[1, 0]. set_ylabel(’Total␣Energy␣($\hbar␣\omega$)’)
123 axs[1, 0]. set_title(’Total␣Energy␣vs␣a’)
124 axs[1, 0]. legend(loc=’upper␣right ’)
125

126 # Plot Exact Energy in the fourth subplot
127 axs[1, 1]. axhline(y=exact_energy , color=’black ’,

linestyle=’--’, label=’Exact␣Energy ’)
128 axs[1, 1]. set_xlabel(’a’)
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129 axs[1, 1]. set_ylabel(’Energy␣($\hbar␣\omega$)’)
130 axs[1, 1]. set_title(’Exact␣Energy ’)
131 axs[1, 1]. legend(loc=’upper␣right ’)
132

133 # Add Table for Results
134 cell_text = [
135 [labels[i], f’{min_energy[psi ]:.4f}’,

f’{optimal_a[psi ]:.2f}’]
136 for i, psi in enumerate(trial_wavefunctions)
137 ]
138 columns = [’Wavefunction ’, ’Min␣Energy␣($\hbar␣\omega$)’,

’Optimal␣a’]
139 plt.subplots_adjust(bottom =0.3)
140

141 # Table below plots
142 plt.table(
143 cellText=cell_text ,
144 colLabels=columns ,
145 cellLoc=’center ’,
146 loc=’bottom ’,
147 bbox=[0, -0.4, 1, 0.3]
148 )
149

150 plt.tight_layout ()
151 plt.savefig(’Energy_vs_a_with_Exact_Energy.png’)
152 plt.show()

Listing : Python code to plot kinetic, potential, and total energy vs. a

2 Trial wavefunction for different value of a

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9

10 # Define the range for x values
11 x = np.linspace (-20, 20, 500)
12

13 # Define trial wavefunctions
14 def psi1(a, x):
15 return np.exp(-a * np.abs(x))
16

17 def psi2(a, x):
18 return 1 / (x**2 + a**2)
19

20 def psi3(a, x):
21 return 1 / (1 + a * x**2) **2
22

23 def psi4(a, x):
24 return np.exp(-a * x**2)
25

26 # Define different values of a
27 a_values = [0.1, 0.5, 1.0, 2.0]
28

29 # Plotting
30 plt.figure(figsize =(15, 10))
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31

32 for i, a in enumerate(a_values):
33 plt.subplot(2, 2, i + 1)
34 plt.plot(x, psi1(a, x), label=r’$\psi_ {1}(x)␣=␣

e^{-a|x|}$’)
35 plt.plot(x, psi2(a, x), label=r’$\psi_ {2}(x)␣=␣

\frac {1}{x^2␣+␣a^2}$’)
36 plt.plot(x, psi3(a, x), label=r’$\psi_ {3}(x)␣=␣

\frac {1}{(1␣+␣ax^2)^2}$’)
37 plt.plot(x, psi4(a, x), label=r’$\psi_ {4}(x)␣=␣

e^{-ax^2}$’, linestyle=’--’)
38 plt.title(f’Trial␣Wavefunctions␣for␣a␣=␣{a}’)
39 plt.xlabel(’x’)
40 plt.ylabel(’Wavefunction ’)
41 plt.legend ()
42 plt.grid(True)
43

44 plt.tight_layout ()
45 plt.savefig(’Trial_Wavefunctions_with_Psi4_ax2.pdf’)
46 plt.show()

Listing : Trial wavefunction for different value of a

3 Trial Wave Functions under Optimal Param-
eters

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Trial wave functions
5 def trial_wavefunction_1(x, a=0.50):
6 return np.exp(-a * x**2)
7

8 def trial_wavefunction_2(x, a=0.90):
9 return np.exp(-a * np.abs(x))

10

11 def trial_wavefunction_3(x, a=0.70):
12 return 1 / (x**2 + a)
13

14 def trial_wavefunction_4(x, a=0.40):
15 return 1 / (1 + a * x**2) **2
16

17 # Generate x values
18 x = np.linspace(-5, 5, 400)
19

20 # Optimal parameters (example)
21 a_opt_1 = 0.50
22 a_opt_2 = 0.90
23 a_opt_3 = 0.70
24 a_opt_4 = 0.40
25

26 # Calculate wave functions with optimal parameters
27 y1 = trial_wavefunction_1(x, a_opt_1)
28 y2 = trial_wavefunction_2(x, a_opt_2)
29 y3 = trial_wavefunction_3(x, a_opt_3)
30 y4 = trial_wavefunction_4(x, a_opt_4)
31

32 # Plot the wave functions
33 plt.figure(figsize =(8, 6))
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34 plt.plot(x, y1, label=r’$\psi_1(x)␣=␣e^{-a␣x^2},␣a␣=␣%.2f$’
% a_opt_1 , color=’blue’)

35 plt.plot(x, y2, label=r’$\psi_2(x)␣=␣e^{-a␣|x|},␣a␣=␣%.2f$’
% a_opt_2 , color=’red’)

36 plt.plot(x, y3, label=r’$\psi_3(x)␣=␣\frac {1}{x^2␣+␣a},␣a␣=␣
%.2f$’ % a_opt_3 , color=’green ’)

37 plt.plot(x, y4, label=r’$\psi_4(x)␣=␣\frac {1}{(1␣+␣a␣
x^2)^2},␣a␣=␣%.2f$’ % a_opt_4 , color=’purple ’)

38

39 plt.xlabel(’x’)
40 plt.ylabel(’Wavefunction ’)
41 plt.title(’Trial␣Wave␣Functions␣under␣Optimal␣Parameters ’)
42 plt.legend ()
43 plt.grid(True)
44 plt.show()

Listing : Trial Wave Functions under Optimal Parameters

4 Minimum Energy vs Optimal value of a for
Wavefunctions

1 import matplotlib.pyplot as plt
2

3 # Data from the table
4 wavefunctions = [
5 r’$\psi_1(x)␣=␣e^{-a␣|x|}$’,
6 r’$\psi_2(x)␣=␣\frac {1}{x^2␣+␣a}$’,
7 r’$\psi_3(x)␣=␣\frac {1}{(1␣+␣a␣x^2) ^2}$’,
8 r’$\psi_4(x)␣=␣e^{-a␣x^2}$’
9 ]

10

11 min_energies = [0.6728 , 0.6853 , 0.5286 , 0.4992] # Minimum
energy values

12 optimal_a = [0.90 , 0.70, 0.40, 0.50] # Corresponding
optimal ’a’ values

13

14 # Colors for each wavefunction
15 colors = [’blue’, ’red’, ’green’, ’purple ’]
16

17 # Plotting
18 plt.figure(figsize =(8, 6))
19 for i in range(len(wavefunctions)):
20 plt.scatter(optimal_a[i], min_energies[i],

color=colors[i], label=wavefunctions[i])
21

22 # Adding labels and title with adjustments to avoid overlap
23 plt.xlabel(’Optimal␣value␣of␣␣a’)
24 plt.ylabel(’Min␣Energy␣$(\hbar␣\omega)$’)
25 plt.title(’Minimum␣Energy␣vs␣Optimal␣␣value␣of␣a␣for␣

Wavefunctions ’)
26

27 # Adjusting position of labels to avoid overlap
28 for i in range(len(wavefunctions)):
29 if i == 1: # Move the text below for the second

wavefunction
30 plt.text(optimal_a[i] + 0.01, min_energies[i] -

0.02, wavefunctions[i], fontsize =12,
color=colors[i])

31 else:
32 plt.text(optimal_a[i] + 0.01, min_energies[i] +

0.01, wavefunctions[i], fontsize =12,
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color=colors[i])
33

34 plt.legend(loc=’upper␣left’)
35 plt.grid(True)
36 plt.tight_layout () # Prevents overlap of title/labels
37 plt.show()

Listing : Minimum Energy vs Optimal value of a for Wavefunctions

5 Comparison of Trial Wavefunctions for dif-
ferent value of alpha

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib.backends.backend_pdf import PdfPages
4

5 # Define constants in natural units
6 hbar = 1
7 k = 1
8 mu = 1
9 alpha0 = np.sqrt(k * mu / hbar **2)

10 omega = np.sqrt(k / mu)
11

12 # Define the range for x values
13 x = np.linspace (-20, 20, 500)
14

15 # Define the trial wavefunction
16 def trial_wave(alpha , xt):
17 return np.exp(-alpha * xt**2)
18

19 # Define the first derivative of a function with respect to x
20 def dfdx(ft, xt):
21 dx = xt[1] - xt[0]
22 return np.gradient(ft, dx)
23

24 # Function to find the minimum of a function
25 def find_min(ft , xt):
26 ftp = dfdx(ft , xt)
27 min_idx = np.argmin(ft)
28 return ft[min_idx], xt[min_idx]
29

30 # Kinetic energy operator
31 def T_phi(ft, xt):
32 ftp = dfdx(ft , xt)
33 ftpp = dfdx(ftp , xt)
34 return -0.5 * ftpp
35

36 # Potential energy operator
37 def V_phi(ft, xt):
38 return 0.5 * xt**2 * ft
39

40 # Functional for kinetic energy
41 def T_functional(ft , xt):
42 tphi = T_phi(ft , xt)
43 dx = xt[1] - xt[0]
44 return np.trapz(ft * tphi , xt) / np.trapz(ft**2, xt)
45

46 # Functional for potential energy
47 def V_functional(ft , xt):
48 vphi = V_phi(ft , xt)
49 dx = xt[1] - xt[0]
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50 return np.trapz(ft * vphi , xt) / np.trapz(ft**2, xt)
51

52 # Main loop for different alpha values
53 alpha_values = np.linspace (0.05 * 3, 0.05 * 22, 20)
54 E_values = np.zeros_like(alpha_values)
55 T_values = np.zeros_like(alpha_values)
56 V_values = np.zeros_like(alpha_values)
57 E_ground_state = np.zeros_like(alpha_values)
58

59 for i, alpha in enumerate(alpha_values):
60 # Evaluate trial wavefunction
61 Phi_trial = trial_wave(alpha , x)
62 # Evaluate functionals
63 T_values[i] = T_functional(Phi_trial , x)
64 V_values[i] = V_functional(Phi_trial , x)
65 E_values[i] = T_values[i] + V_values[i]
66 # Store true ground state energy
67 E_ground_state[i] = omega * 0.5
68

69 # Plot T, V, E, Eg vs alpha
70 plt.plot(alpha_values , E_values , ’red’, label=’Total␣Energy ’)
71 plt.plot(alpha_values , T_values , ’blue’, label=’Kinetic␣

Energy ’)
72 plt.plot(alpha_values , V_values , ’purple ’, label=’Potential␣

Energy ’)
73 plt.plot(alpha_values , E_ground_state , ’black’, label=’True␣

Ground␣State␣Energy ’)
74 plt.xlabel(’Alpha’)
75 plt.ylabel(’Energy ’)
76 plt.legend ()
77 plt.title(’Energy␣vs␣Alpha’)
78 plt.savefig(’Energy.pdf’) # Save as PDF
79 plt.show()
80

81 # Find the minimum energy
82 min_energy , min_alpha = find_min(E_values , alpha_values)
83 print("Minimum␣Energy:", min_energy)
84 print("Optimal␣Alpha:", min_alpha)
85 print("True␣Ground␣State␣Energy:", E_ground_state [0])
86

87 # Plot trial wavefunctions for comparison
88 Phi_trial_large_alpha = trial_wave (0.1, x)
89 Phi_trial_small_alpha = trial_wave (0.4, x)
90 Phi_trial_large_alpha1 = trial_wave (0.8, x)
91 Phi_trial_small_alpha2 = trial_wave (1.2, x)
92

93 plt.plot(x, Phi_trial_large_alpha , ’red’, label=’0.1’)
94 plt.plot(x, Phi_trial_small_alpha , ’blue’, label=’0.4’)
95 plt.plot(x, Phi_trial_large_alpha1 , ’black’, label=’0.8’)
96 plt.plot(x, Phi_trial_small_alpha2 , ’green’, label=’1.2’)
97 plt.xlabel(’x’)
98 plt.ylabel(’Trial␣Wavefunction ’)
99 plt.legend ()

100 plt.title(’Comparison␣of␣Trial␣Wavefunctions␣for␣different␣
value␣of␣alpha ’)

101 plt.savefig(’Comparison_of_Trial_Wavefunctions.pdf’) # Save
as PDF

102 plt.show()
103

104 # Create a PDF file to save all plots
105 with PdfPages(’output_plots.pdf’) as pdf:
106 # Plot main energy vs alpha
107 plt.plot(alpha_values , E_values , ’red’, label=’Total␣

Energy ’)
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108 plt.plot(alpha_values , T_values , ’blue’, label=’Kinetic␣
Energy ’)

109 plt.plot(alpha_values , V_values , ’purple ’,
label=’Potential␣Energy ’)

110 plt.plot(alpha_values , E_ground_state , ’black’,
label=’True␣Ground␣State␣Energy ’)

111 plt.xlabel(’Alpha’)
112 plt.ylabel(’Energy ’)
113 plt.legend ()
114 plt.title(’Energy␣vs␣Alpha’)
115 pdf.savefig () # Save the current plot to the PDF
116 plt.close () # Close the current plot
117

118 # Plot trial wavefunctions for comparison
119 plt.plot(x, Phi_trial_large_alpha , ’red’, label=’0.1’)
120 plt.plot(x, Phi_trial_small_alpha , ’blue’, label=’0.4’)
121 plt.plot(x, Phi_trial_large_alpha1 , ’black’, label=’0.8’)
122 plt.plot(x, Phi_trial_small_alpha2 , ’green’, label=’1.2’)
123 plt.xlabel(’x’)
124 plt.ylabel(’Trial␣Wavefunction ’)
125 plt.legend ()
126 plt.title(’Comparison␣of␣Trial␣Wavefunctions␣for␣

different␣value␣of␣alpha’)
127 pdf.savefig () # Save the current plot to the PDF
128 plt.close () # Close the current plot

Listing : Comparison of Trial Wavefunctions for different value of alpha

6 Wavefunctions Comparison

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9

10 # Define the range for x values
11 x = np.linspace(-5, 5, 500)
12

13 # Define trial wavefunctions
14 def psi1(a, x):
15 return np.exp(-a * np.abs(x))
16

17 def psi2(a, x):
18 return 1 / (x**2 + a)
19

20 def psi3(a, x):
21 return 1 / (1 + a * x**2) **2
22

23 # Define the true ground state wavefunction of the quantum
harmonic oscillator

24 def psi_true(m, omega , x, n=1):
25 return (m * omega / (n * hbar))**0.25 * np.exp(-m *

omega * x**2 / (2 * n))
26

27 # Parameter ’a’ for the trial wavefunctions
28 a = 0.1
29
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30 # Normalization constants
31 A1 = 1 / np.sqrt(np.trapz(psi1(a, x)**2, x))
32 A2 = 1 / np.sqrt(np.trapz(psi2(a, x)**2, x))
33 A3 = 1 / np.sqrt(np.trapz(psi3(a, x)**2, x))
34 A_true = 1 / np.sqrt(np.trapz(psi_true(mu, omega , x)**2, x))
35

36 # Evaluate the wavefunctions
37 psi1_values = A1 * psi1(a, x)
38 psi2_values = A2 * psi2(a, x)
39 psi3_values = A3 * psi3(a, x)
40 psi_true_values = A_true * psi_true(mu , omega , x)
41

42 # Plotting the wavefunctions
43 plt.figure(figsize =(10, 6))
44 plt.plot(x, psi1_values , label=r’$\psi_1(x)=Ae^{-a|x|}$’,

color=’red’)
45 plt.plot(x, psi2_values , label=r’$\psi_2(x)=\frac{A}{x^2␣+␣

a}$’, color=’blue’)
46 plt.plot(x, psi3_values ,

label=r’$\psi_3(x)=\frac{A}{(1+ax^2) ^2}$’, color=’green ’)
47 plt.plot(x, psi_true_values ,

label=r’$\psi_{\ mathrm{true }}(x)=\left(\frac{m\omega }{\ hbar}\right)^{1/4}␣
e^{-\frac{m\omega␣x^2}{2}}$’, color=’black ’,
linestyle=’--’)

48

49 plt.xlabel(’x’)
50 plt.ylabel(r’$\psi(x)$’)
51 plt.title(’Wavefunctions␣Comparison ’)
52 plt.legend ()
53 plt.grid(True)
54 plt.savefig(’Wavefunctions_Comparison.png’)
55 plt.show()

Listing : Wavefunctions Comparison

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9

10 # Define the range for x values
11 x = np.linspace (-20, 20, 500)
12

13 # Define trial wavefunctions
14 def psi1(a, x):
15 return np.exp(-a * np.abs(x))
16

17 def psi2(a, x):
18 return 1 / (x**2 + a)
19

20 def psi3(a, x):
21 return 1 / (1 + a * x**2) **2
22

23 def psi4(a, x):
24 return np.exp(-a * x**2)
25

26 # Normalize a wave function
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27 def normalize_wavefunction(psi , x):
28 norm_factor = np.sqrt(np.trapz(np.abs(psi)**2,

x)) # Integral of |psi(x)|^2
29 return psi / norm_factor # Normalize the wave

function
30

31 # Define the first derivative of a function with
respect to x

32 def dfdx(ft, xt):
33 dx = xt[1] - xt[0]
34 return np.gradient(ft, dx)
35

36 # Kinetic energy operator
37 def T_phi(ft, xt):
38 ftp = dfdx(ft, xt)
39 ftpp = dfdx(ftp , xt)
40 return -0.5 * ftpp
41

42 # Potential energy operator
43 def V_phi(ft, xt):
44 return 0.5 * xt**2 * ft
45

46 # Functional for kinetic energy
47 def T_functional(ft, xt):
48 tphi = T_phi(ft, xt)
49 return np.trapz(ft * tphi , xt) / np.trapz(ft**2,

xt)
50

51 # Functional for potential energy
52 def V_functional(ft, xt):
53 vphi = V_phi(ft, xt)
54 return np.trapz(ft * vphi , xt) / np.trapz(ft**2,

xt)
55

56 # Define different values of a
57 a_values = np.linspace (0.1, 2.0, 20)
58

59 # Initialize dictionaries for storing energy values
60 trial_wavefunctions = [psi1 , psi2 , psi3 , psi4]
61 T_values = {psi: [] for psi in trial_wavefunctions}
62 V_values = {psi: [] for psi in trial_wavefunctions}
63 E_values = {psi: [] for psi in trial_wavefunctions}
64

65 exact_energy = 0.5 * omega
66

67 # Minimum energy , optimal a, and true ground state
energy storage

68 min_energy = {psi: float(’inf’) for psi in
trial_wavefunctions}

69 optimal_a = {psi: None for psi in
trial_wavefunctions}

70

71 # Compute energies
72 for psi in trial_wavefunctions:
73 energies = []
74 for a in a_values:
75 Phi_trial = psi(a, x)
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76 Phi_trial_normalized =
normalize_wavefunction(Phi_trial , x) #
Normalize the wave function

77 T = T_functional(Phi_trial_normalized , x)
78 V = V_functional(Phi_trial_normalized , x)
79 E = T + V
80 energies.append(E)
81 T_values[psi]. append(T)
82 V_values[psi]. append(V)
83 E_values[psi]. append(E)
84

85 # Find minimum energy and corresponding a
86 min_energy[psi] = min(energies)
87 optimal_a[psi] = a_values[np.argmin(energies)]
88

89 # Plotting
90 labels = [
91 r’$\psi_ {1}(x) = e^{-a|x|}$’,
92 r’$\psi_ {2}(x) = \frac {1}{x^2 + a}$’,
93 r’$\psi_ {3}(x) = \frac {1}{(1 + ax^2)^2}$’,
94 r’$\psi_ {4}(x) = e^{-ax^2}$’
95 ]
96 colors = [’red’, ’blue’, ’green’, ’purple ’]
97

98 fig , axs = plt.subplots(2, 2, figsize =(15, 12))
99

100 # Plot Kinetic Energy
101 for i, psi in enumerate(trial_wavefunctions):
102 axs[0, 0]. plot(a_values , T_values[psi],

label=labels[i], color=colors[i])
103 axs[0, 0]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
104 axs[0, 0]. set_xlabel(’a’)
105 axs[0, 0]. set_ylabel(’Kinetic Energy ($\hbar

\omega$)’)
106 axs[0, 0]. set_title(’Kinetic Energy vs a’)
107 axs[0, 0]. legend(loc=’upper right’)
108

109 # Plot Potential Energy
110 for i, psi in enumerate(trial_wavefunctions):
111 axs[0, 1]. plot(a_values , V_values[psi],

label=labels[i], color=colors[i])
112 axs[0, 1]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
113 axs[0, 1]. set_xlabel(’a’)
114 axs[0, 1]. set_ylabel(’Potential Energy ($\hbar

\omega$)’)
115 axs[0, 1]. set_title(’Potential Energy vs a’)
116 axs[0, 1]. legend(loc=’upper right’)
117

118 # Plot Total Energy
119 for i, psi in enumerate(trial_wavefunctions):
120 axs[1, 0]. plot(a_values , E_values[psi],

label=labels[i], color=colors[i])
121 axs[1, 0]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
122 axs[1, 0]. set_xlabel(’a’)
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123 axs[1, 0]. set_ylabel(’Total Energy ($\hbar \omega$)’)
124 axs[1, 0]. set_title(’Total Energy vs a’)
125 axs[1, 0]. legend(loc=’upper right’)
126

127 # Plot Exact Energy
128 axs[1, 1]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
129 axs[1, 1]. set_xlabel(’a’)
130 axs[1, 1]. set_ylabel(’Energy ($\hbar \omega$)’)
131 axs[1, 1]. set_title(’Exact Energy ’)
132 axs[1, 1]. legend(loc=’upper right’)
133

134 # Add Table
135 cell_text = [
136 [labels[i], f’{min_energy[psi ]:.4f}’,

f’{optimal_a[psi ]:.2f}’]
137 for i, psi in enumerate(trial_wavefunctions)
138 ]
139 columns = [’Wavefunction ’, ’Min Energy ($\hbar

\omega$)’, ’Optimal a’]
140

141 # Adjust space for table and text
142 plt.subplots_adjust(bottom =0.3) # Adjust space to

prevent overlap
143

144 # Table below the plots
145 table = plt.table(
146 cellText=cell_text ,
147 colLabels=columns ,
148 cellLoc=’center ’,
149 loc=’bottom ’,
150 bbox=[0, -0.35, 1, 0.3]
151 )
152

153 # Add external text below the table
154 plt.figtext(
155 0.5, -0.55, # Position text below the table
156 ’\n’.join([
157 f’{labels[i]}: Min Energy =

{min_energy[psi ]:.4f}, Optimal a =
{optimal_a[psi ]:.2f}’

158 for i, psi in enumerate(trial_wavefunctions)
159 ]),
160 fontsize =10, color=’black’, ha=’center ’, va=’top’
161 )
162

163 plt.tight_layout ()
164 plt.savefig(’Energy_vs_a_with_normalization_and_table.png’)
165 plt.show()

Listing : Comparison of Energies for Different Trial Wavefunctions

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
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6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9

10 # Define the range for x values
11 x = np.linspace (-20, 20, 500)
12

13 # Define trial wavefunctions
14 def psi1(a, x):
15 return np.exp(-a * np.abs(x))
16

17 def psi2(a, x):
18 return 1 / (x**2 + a)
19

20 def psi3(a, x):
21 return 1 / (1 + a * x**2) **2
22

23 def psi4(a, x):
24 return np.exp(-a * x**2) # Corrected

wavefunction: e^(-a * x^2)
25

26 # Define the first derivative of a function with
respect to x

27 def dfdx(ft, xt):
28 dx = xt[1] - xt[0]
29 return np.gradient(ft, dx)
30

31 # Kinetic energy operator
32 def T_phi(ft, xt):
33 ftp = dfdx(ft, xt)
34 ftpp = dfdx(ftp , xt)
35 return -0.5 * ftpp
36

37 # Potential energy operator
38 def V_phi(ft, xt):
39 return 0.5 * xt**2 * ft
40

41 # Functional for kinetic energy
42 def T_functional(ft, xt):
43 tphi = T_phi(ft, xt)
44 return np.trapz(ft * tphi , xt) / np.trapz(ft**2,

xt)
45

46 # Functional for potential energy
47 def V_functional(ft, xt):
48 vphi = V_phi(ft, xt)
49 return np.trapz(ft * vphi , xt) / np.trapz(ft**2,

xt)
50

51 # Values for parameter ’a’
52 a_values = [0.90, 0.70, 0.40, 0.50]
53

54 trial_wavefunctions = [psi1 , psi2 , psi3 , psi4] #
Add new wavefunction

55 energies = {a: [] for a in a_values} # Store
energies for each a value

56 energy_deviations = {a: [] for a in a_values} #
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Store energy deviations for each a value
57

58 # Loop over each value of ’a’
59 for a in a_values:
60 for psi in trial_wavefunctions:
61 Phi_trial = psi(a, x)
62 T = T_functional(Phi_trial , x)
63 V = V_functional(Phi_trial , x)
64 E = T + V
65 energies[a]. append(E)
66 energy_deviations[a]. append(np.abs((E - 0.5

* omega) / (0.5 * omega)) * 100)
67

68 # Plotting
69 labels = [
70 r’$\psi_ {1}(x, a)=e^{-a|x|}$’,
71 r’$\psi_ {2}(x, a)=\frac {1}{x^2 + a}$’,
72 r’$\psi_ {3}(x, a)=\frac {1}{(1+ ax^2) ^2}$’,
73 r’$\psi_ {4}(x, a)=e^{-a x^2}$’
74 ]
75

76 # Create subplots with 2 rows and enough columns for
all ‘a_values ‘

77 fig , axs = plt.subplots(2, len(a_values),
figsize =(20, 10))

78

79 for i, a in enumerate(a_values):
80 # Energy plot
81 axs[0, i].bar(labels , energies[a], color=[’red’,

’blue’, ’green’, ’purple ’])
82 axs[0, i]. axhline(y=0.5 * omega , color=’black’,

linestyle=’--’, label=’True Ground State
Energy ’)

83 axs[0, i]. set_ylabel(’Energy ($\hbar \omega$)’,
fontsize =10)

84 axs[0, i]. set_title(f’Energy for a={a}’,
fontsize =12)

85 axs[0, i]. legend(fontsize =8)
86 axs[0, i]. set_xticklabels(labels , fontsize =12,

rotation =45, ha=’right ’) # Adjust font size
and rotation

87

88 # Energy deviation plot
89 axs[1, i].bar(labels , energy_deviations[a],

color=[’red’, ’blue’, ’green’, ’purple ’])
90 axs[1, i]. set_ylabel(’Energy Deviation from $0.5

\, \hbar \omega$ (%)’, fontsize =10)
91 axs[1, i]. set_title(f’Energy Deviation for

a={a}’, fontsize =12)
92 axs[1, i]. set_xticklabels(labels , fontsize =12,

rotation =45, ha=’right ’) # Adjust font size
and rotation

93

94 plt.tight_layout ()
95 plt.savefig(’Comparison_of_Energies_and_Energy_Deviations.png’)
96 plt.show()
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Listing : Comparison of Energies for Different Trial Wavefunctions

1

2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 # Define constants in natural units
6 hbar = 1
7 k = 1
8 mu = 1
9 omega = np.sqrt(k / mu)

10

11 # Define the range for x values with high resolution
12 x = np.linspace (-3000, 3000, 5000000)
13

14 # Define trial wavefunctions
15 def psi1(a, x):
16 return np.exp(-a * np.abs(x))
17

18 def psi2(a, x):
19 return 1 / (x**2 + a)
20

21 def psi3(a, x):
22 return 1 / (1 + a * x**2) **2
23

24 def psi4(a, x):
25 return np.exp(-a * x**2)
26

27 # Define hybrid wavefunctions
28 def hybrid1(a, x):
29 return psi1(a, x) + psi4(a, x)
30

31 def hybrid2(a, x):
32 return psi2(a, x) + psi3(a, x)
33

34 # Normalize a wave function
35 def normalize_wavefunction(psi , x):
36 norm_factor = np.sqrt(np.trapz(np.abs(psi)**2,

x)) # Integral of |psi(x)|^2
37 return psi / norm_factor # Normalize the wave

function
38

39 # Second derivative using a central difference scheme
40 def dfdx(ft, xt):
41 dx = xt[1] - xt[0]
42 return np.gradient(ft, dx)
43

44 # Kinetic energy operator
45 def T_phi(ft, xt):
46 ftp = dfdx(ft, xt)
47 ftpp = dfdx(ftp , xt)
48 return -0.5 * ftpp
49

50 # Potential energy operator
51 def V_phi(ft, xt):
52 return 0.5 * xt**2 * ft
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53

54 # Functionals for kinetic and potential energy
55 def T_functional(ft, xt):
56 tphi = T_phi(ft, xt)
57 return np.trapz(ft * tphi , xt) / np.trapz(ft**2,

xt)
58

59 def V_functional(ft, xt):
60 vphi = V_phi(ft, xt)
61 return np.trapz(ft * vphi , xt) / np.trapz(ft**2,

xt)
62

63 # Define different values of a with higher resolution
64 a_values = np.linspace (0.1, 2.0, 100)
65

66 # Initialize dictionaries for storing energy values
67 trial_wavefunctions = [psi1 , psi2 , psi3 , psi4 ,

hybrid1 , hybrid2]
68 labels = [
69 r’$\psi_ {1}(x) = e^{-a|x|}$’,
70 r’$\psi_ {2}(x) = \frac {1}{x^2 + a}$’,
71 r’$\psi_ {3}(x) = \frac {1}{(1 + ax^2)^2}$’,
72 r’$\psi_ {4}(x) = e^{-ax^2}$’,
73 r’Hybrid 1: $\psi_ {1} + \psi_ {4}$’,
74 r’Hybrid 2: $\psi_ {2} + \psi_ {3}$’
75 ]
76

77 # Store energies and optimal parameters
78 min_energy = {}
79 optimal_a = {}
80 T_values = {psi: [] for psi in trial_wavefunctions}
81 V_values = {psi: [] for psi in trial_wavefunctions}
82 E_values = {psi: [] for psi in trial_wavefunctions}
83

84 # Exact energy of the quantum harmonic oscillator
ground state

85 exact_energy = 0.5 * omega
86

87 # Compute energies for each trial wavefunction
88 for psi in trial_wavefunctions:
89 energies = []
90 for a in a_values:
91 Phi_trial = psi(a, x)
92 Phi_trial_normalized =

normalize_wavefunction(Phi_trial , x) #
Normalize the wave function

93

94 T = T_functional(Phi_trial_normalized , x)
95 V = V_functional(Phi_trial_normalized , x)
96 E = T + V
97

98 T_values[psi]. append(T)
99 V_values[psi]. append(V)

100 E_values[psi]. append(E)
101 energies.append(E)
102

103 # Find minimum energy and corresponding a
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104 min_energy[psi] = min(energies)
105 optimal_a[psi] = a_values[np.argmin(energies)]
106

107 colors = [’red’, ’blue’, ’green’, ’purple ’,
’orange ’, ’cyan’]

108 fig , axs = plt.subplots(2, 2, figsize =(15, 12))
109

110 # Plot Kinetic Energy
111 for i, psi in enumerate(trial_wavefunctions):
112 axs[0, 0]. plot(a_values , T_values[psi],

label=labels[i], color=colors[i])
113 axs[0, 0]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
114 axs[0, 0]. set_xlabel(’a’)
115 axs[0, 0]. set_ylabel(’Kinetic Energy ($\hbar

\omega$)’)
116 axs[0, 0]. set_title(’Kinetic Energy vs a’)
117 axs[0, 0]. legend(loc=’upper right’)
118

119 # Plot Potential Energy
120 for i, psi in enumerate(trial_wavefunctions):
121 axs[0, 1]. plot(a_values , V_values[psi],

label=labels[i], color=colors[i])
122 axs[0, 1]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
123 axs[0, 1]. set_xlabel(’a’)
124 axs[0, 1]. set_ylabel(’Potential Energy ($\hbar

\omega$)’)
125 axs[0, 1]. set_title(’Potential Energy vs a’)
126 axs[0, 1]. legend(loc=’upper right’)
127

128 # Plot Total Energy
129 for i, psi in enumerate(trial_wavefunctions):
130 axs[1, 0]. plot(a_values , E_values[psi],

label=labels[i], color=colors[i])
131 axs[1, 0]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
132 axs[1, 0]. set_xlabel(’a’)
133 axs[1, 0]. set_ylabel(’Total Energy ($\hbar \omega$)’)
134 axs[1, 0]. set_title(’Total Energy vs a’)
135 axs[1, 0]. legend(loc=’upper right’)
136

137 # Plot Exact Energy in the fourth subplot
138 axs[1, 1]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
139 axs[1, 1]. set_xlabel(’a’)
140 axs[1, 1]. set_ylabel(’Energy ($\hbar \omega$)’)
141 axs[1, 1]. set_title(’Exact Energy ’)
142 axs[1, 1]. legend(loc=’upper right’)
143

144 # Add Table for Results
145 cell_text = [
146 [labels[i], f’{min_energy[psi ]:.4f}’,

f’{optimal_a[psi ]:.2f}’,
f’{exact_energy :.4f}’]

147 for i, psi in enumerate(trial_wavefunctions)
148 ]

17



149 columns = [’Wavefunction ’, ’Min Energy ($\hbar
\omega$)’, ’Optimal a’, ’Exact Energy ($\hbar
\omega$)’]

150 plt.subplots_adjust(bottom =0.3)
151

152 # Table below plots
153 plt.table(
154 cellText=cell_text ,
155 colLabels=columns ,
156 cellLoc=’center ’,
157 loc=’bottom ’,
158 bbox=[0, -0.4, 1, 0.3]
159 )
160

161 # Display all plots
162 plt.tight_layout ()
163 plt.show()

Listing : Comparison of Energies for Different Trial Hybrid Wavefunctions

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define constants in natural units
5 hbar = 1
6 k = 1
7 mu = 1
8 omega = np.sqrt(k / mu)
9 lambda_anharmonic = 0.1 # Anharmonicity parameter

(you can vary this)
10

11 # Define the range for x values with high resolution
12 x = np.linspace (-1000, 1000, 50000)
13

14 # Define trial wavefunctions
15 def psi1(a, x):
16 return np.exp(-a * np.abs(x))
17

18 def psi2(a, x):
19 return 1 / (x**2 + a)
20

21 def psi3(a, x):
22 return 1 / (1 + a * x**2) **2
23

24 def psi4(a, x):
25 return np.exp(-a * x**2)
26

27 # Define hybrid wavefunctions
28 def hybrid1(a, x):
29 return psi1(a, x) + psi4(a, x)
30

31 def hybrid2(a, x):
32 return psi2(a, x) + psi3(a, x)
33

34 # Normalize a wave function
35 def normalize_wavefunction(psi , x):
36 norm_factor = np.sqrt(np.trapz(np.abs(psi)**2,
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x)) # Integral of |psi(x)|^2
37 return psi / norm_factor # Normalize the wave

function
38

39 # Second derivative using a central difference scheme
40 def dfdx(ft, xt):
41 dx = xt[1] - xt[0]
42 return np.gradient(ft, dx)
43

44 # Kinetic energy operator
45 def T_phi(ft, xt):
46 ftp = dfdx(ft, xt)
47 ftpp = dfdx(ftp , xt)
48 return -0.5 * ftpp
49

50 # Potential energy operator (including anharmonic
term)

51 def V_phi(ft, xt):
52 harmonic_term = 0.5 * xt**2
53 anharmonic_term = lambda_anharmonic * xt**4 #

Anharmonic potential
54 return (harmonic_term + anharmonic_term) * ft
55

56 # Functionals for kinetic and potential energy
57 def T_functional(ft, xt):
58 tphi = T_phi(ft, xt)
59 return np.trapz(ft * tphi , xt) / np.trapz(ft**2,

xt)
60

61 def V_functional(ft, xt):
62 vphi = V_phi(ft, xt)
63 return np.trapz(ft * vphi , xt) / np.trapz(ft**2,

xt)
64

65 # Define different values of a with higher resolution
66 a_values = np.linspace (0.1, 2.0, 100)
67

68 # Initialize dictionaries for storing energy values
69 trial_wavefunctions = [psi1 , psi2 , psi3 , psi4 ,

hybrid1 , hybrid2]
70 labels = [
71 r’$\psi_ {1}(x) = e^{-a|x|}$’,
72 r’$\psi_ {2}(x) = \frac {1}{x^2 + a}$’,
73 r’$\psi_ {3}(x) = \frac {1}{(1 + ax^2)^2}$’,
74 r’$\psi_ {4}(x) = e^{-ax^2}$’,
75 r’Hybrid 1: $\psi_ {1} + \psi_ {4}$’,
76 r’Hybrid 2: $\psi_ {2} + \psi_ {3}$’
77 ]
78

79 # Store energies and optimal parameters
80 min_energy = {}
81 optimal_a = {}
82 T_values = {psi: [] for psi in trial_wavefunctions}
83 V_values = {psi: [] for psi in trial_wavefunctions}
84 E_values = {psi: [] for psi in trial_wavefunctions}
85

86 # Exact energy of the quantum harmonic oscillator
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ground state (for comparison)
87 exact_energy = 0.5 * omega
88

89 # Compute energies for each trial wavefunction
90 for psi in trial_wavefunctions:
91 energies = []
92 for a in a_values:
93 Phi_trial = psi(a, x)
94 Phi_trial_normalized =

normalize_wavefunction(Phi_trial , x) #
Normalize the wave function

95

96 T = T_functional(Phi_trial_normalized , x)
97 V = V_functional(Phi_trial_normalized , x)
98 E = T + V
99

100 T_values[psi]. append(T)
101 V_values[psi]. append(V)
102 E_values[psi]. append(E)
103 energies.append(E)
104

105 # Find minimum energy and corresponding a
106 min_energy[psi] = min(energies)
107 optimal_a[psi] = a_values[np.argmin(energies)]
108

109 colors = [’red’, ’blue’, ’green’, ’purple ’,
’orange ’, ’cyan’]

110 fig , axs = plt.subplots(2, 2, figsize =(15, 12))
111

112 # Plot Kinetic Energy
113 for i, psi in enumerate(trial_wavefunctions):
114 axs[0, 0]. plot(a_values , T_values[psi],

label=labels[i], color=colors[i])
115 axs[0, 0]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
116 axs[0, 0]. set_xlabel(’a’)
117 axs[0, 0]. set_ylabel(’Kinetic Energy ($\hbar

\omega$)’)
118 axs[0, 0]. set_title(’Kinetic Energy vs a’)
119 axs[0, 0]. legend(loc=’upper right’)
120

121 # Plot Potential Energy
122 for i, psi in enumerate(trial_wavefunctions):
123 axs[0, 1]. plot(a_values , V_values[psi],

label=labels[i], color=colors[i])
124 axs[0, 1]. axhline(y=exact_energy , color=’black’,

linestyle=’--’, label=’Exact Energy ’)
125 axs[0, 1]. set_xlabel(’a’)
126 axs[0, 1]. set_ylabel(’Potential Energy ($\hbar

\omega$)’)
127 axs[0, 1]. set_title(’Potential Energy vs a’)
128 axs[0, 1]. legend(loc=’upper right’)
129

130 # Plot Total Energy
131 for i, psi in enumerate(trial_wavefunctions):
132 axs[1, 0]. plot(a_values , E_values[psi],

label=labels[i], color=colors[i])
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133 axs[1, 0]. axhline(y=exact_energy , color=’black’,
linestyle=’--’, label=’Exact Energy ’)

134 axs[1, 0]. set_xlabel(’a’)
135 axs[1, 0]. set_ylabel(’Total Energy ($\hbar \omega$)’)
136 axs[1, 0]. set_title(’Total Energy vs a’)
137 axs[1, 0]. legend(loc=’upper right’)
138

139 # Plot Minimum Energy vs Optimal a (new plot)
140 for i, psi in enumerate(trial_wavefunctions):
141 axs[1, 1]. plot(optimal_a[psi], min_energy[psi],

’o’, label=labels[i], color=colors[i])
142 axs[1, 1]. set_xlabel(’Optimal a’)
143 axs[1, 1]. set_ylabel(’Min Energy ($\hbar \omega$)’)
144 axs[1, 1]. set_title(’Min Energy vs Optimal a’)
145 axs[1, 1]. legend(loc=’upper right’) # Add the

legend here
146

147 # Add Table for Results (without Exact Energy column)
148 cell_text = [
149 [labels[i], f’{min_energy[psi ]:.4f}’,

f’{optimal_a[psi ]:.2f}’]
150 for i, psi in enumerate(trial_wavefunctions)
151 ]
152 columns = [’Wavefunction ’, ’Min Energy ($\hbar

\omega$)’, ’Optimal a’]
153 plt.subplots_adjust(bottom =0.3)
154

155 # Table below plots
156 plt.table(
157 cellText=cell_text ,
158 colLabels=columns ,
159 cellLoc=’center ’,
160 loc=’bottom ’,
161 bbox=[0, -0.4, 1, 0.3]
162 )
163

164 # Display all plots
165 plt.tight_layout ()
166 plt.show()

Listing : Anharmonic oscillator
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