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 Purpose of the study: This study aims to find the stability of changes in string 

deflection and the angle of string deflection when an object is launched along a 

flying fox. 

Methodology: This study uses a model built by Kusumastuti, et al. (2017). 

There are two models analyzed, namely the discrete model of string deflection 

𝑦(𝑡) and the angle of string deflection 𝜃(𝑡). The analysis steps include model 

reduction, model discretization, model linearization, fixed point search, and 

stability analysis. Stability is analyzed based on its eigenvalues. 

Main Findings: Based on the research conducted, the following eigenvalues 

were obtained: 𝜆₁ = −0,005ℎ + (0,14565ℎ)𝑖, 𝜆₂ = −0,005ℎ − (0,14565ℎ)𝑖, 𝜆₃ = 

−0,005ℎ + (0,1331480769ℎ)𝑖, dan 𝜆₄ = −0,005ℎ − (0,1331480769ℎ)𝑖. The results 
of the study indicate that the system is in a stable condition (sink) because all 

eigenvalues obtained are complex negative. Thus, it can be concluded that the 

string deflection, string deflection velocity, string deflection angle, and string 

deflection angular velocity are in a stable condition. 

Novelty/Originality of this study: This study provides a new contribution to 

the understanding of discrete system dynamics in flying fox string vibrations, by 

showing that the stability of the system can be analyzed through the negative 

complex eigenvalues generated from the model. 
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1. INTRODUCTION 

Flying fox is one of the popular recreational rides because it challenges the courage and trains the 

adrenaline of its players [1]-[3]. This ride involves the process of gliding from a height using a rope or steel sling 

to a lower runway [4]. The popularity of flying fox makes the safety aspect very important in its design [5]-[7]. 

Based on the National Electronic Injury Surveillance System, there were 16,850 cases of flying fox-related injuries, 

with 52.3% of them due to falls. The high number of injuries shows the need to improve safety through careful 

planning [8], [9]. A mathematical approach can be a solution in ensuring the safety of this ride. 

Mathematical modeling is an approach to representing physical phenomena into mathematical statements 

that can be calculated and understood [10]-[12]. In the context of flying fox, mathematical models are used to 

study the dynamics of vibrations in strings that affect the stability of the ride [13], [14]. This mathematical analysis 
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allows the design of safer and more efficient rides. With a mathematical model, various physical variables that 

affect vibrations can be identified and evaluated [15]-[17]. This approach is an important basis for overcoming the 

risk of injury that may occur. 

The mathematical model of flying fox string vibrations developed by Kusumastuti [18] uses time-

dependent ordinary differential equations. This model formulates the deflection 𝑦(𝑡) and the deflection angle 𝜃(𝑡) 

to predict the vibration pattern of the string. The numerical simulation results of this model produce graphs of 

deflection 𝑦₁(𝑡), deflection velocity 𝑦₂(𝑡), deflection angle 𝜃₁(𝑡), and deflection angular velocity 𝜃₂(𝑡). However, 

the simulation results show several weaknesses, such as too large amplitude and unrealistic vibrations. Therefore, 

validation of this model is needed to ensure that the results are in accordance with real phenomena. Validation of 

a mathematical model is an important process to ensure the feasibility of the model in accurately representing 

physical phenomena [19]-[21]. A valid model must be able to provide consistent, relevant, and representative 

results for the real system. Validation is carried out to ensure that the model can be implemented safely and 

efficiently in everyday life. In the context of flying fox, this validation is a key step to improve the safety of the 

vehicle. By ensuring the accuracy of the model, the risk of accidents can be minimized. 

The importance of safety in flying fox systems is not only relevant to technical challenges but also has 

significant social and economic implications [22]-[24]. Accidents related to flying fox operations can lead to severe 

injuries, legal liabilities, and reputational damage to operators, all of which underscore the urgency of improving 

safety measures. Moreover, the growing popularity of flying fox rides worldwide highlights the need for robust 

designs that can cater to diverse operational conditions and environments [25], [26]. 

The research conducted by Greefrath [27] highlights the importance of applying mathematical modeling 

and discrete mathematics in modern mathematics teaching, with a focus on pedagogical aspects and opportunities 

for developing students' mathematical thinking competencies. Meanwhile, the research by Chand and Koner [28] 

applies realistic 3D numerical modeling to analyze slope stability and identify failure zones in a mining 

environment, demonstrating the application of mathematics in a geotechnical engineering context. Both studies 

emphasize the importance of modeling in their respective domains, but have not specifically examined the 

dynamics of discrete systems in depth. This study fills this gap by conducting dynamic analysis and stability 

evaluation of a discrete mathematical model describing the vibrations of the Flying Fox rope. The focus of this 

study lies in the dynamic system approach, eigenvalue analysis, and system stability, which have not been 

explicitly the main focus in the two previous studies. 

This study has the novelty of developing and analyzing a discrete mathematical model that represents the 

vibration of a Flying Fox rope, a system that is rarely discussed in the scientific literature, especially from the 

perspective of system dynamics and stability [29]. This approach not only offers a theoretical understanding of the 

dynamic behavior of the rope, but also makes practical contributions to the design and safety of Flying Fox systems 

that are widely used in recreation and agility training. The urgency of this study lies in the importance of ensuring 

the stability of the rope structure under various operational conditions, which is directly related to the safety of 

users. By conducting eigenvalue analysis to evaluate the stability of the system, this study provides a strong 

scientific basis for decision making in the design and evaluation of Flying Fox systems more safely and efficiently. 

In addition, this study aims to bridge the gap in the literature by addressing specific shortcomings in 

previous models, such as unrealistic vibration amplitudes and limited validation methods. By incorporating real-

world parameters and testing under various operational conditions, the research seeks to enhance the applicability 

and reliability of mathematical models for flying fox safety. Based on the explanation above, this study aims to 

determine the stability of changes in rope deflection and rope deflection angle when an object is launched on a 

flying fox track. 

 

 

2. RESEARCH METHOD 

2.1. Types of research 

The type of research used in this study is qualitative research or literature study. Qualitative research is 

research that uses data and information that already exists in the literature [24]-[26]. The object of research in this 

study is the mathematical model of Kusumastuti et al. [18] research on the mathematical model of flying fox string 

vibrations.  

 

2.2. Pre-Research 

The pre-research conducted by the author is to collect a number of references that are in accordance with 

this research, determine the mathematical model to be used [33], [34]. The author uses a mathematical model 

constructed by Kusumastuti, et al. [18] to conduct validation analysis. Validation is carried out by conducting a 

dynamic analysis of the discrete model of flying fox string vibration. 
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2.3. Research Stages 

The stages of this research are carried out through several systematic steps to analyze the mathematical 

model of flying fox string vibration. First, a model reduction is carried out to simplify the mathematical system so 

that it is easier to analyze. Furthermore, the reduced model is discretized using the Forward Euler method, which 

is one of the numerical methods for solving differential equations in discrete form [29]-[31]. After that, the 

resulting nonlinear model is linearized with Taylor series expansion to facilitate its mathematical analysis [38]. 

Then, the equilibrium point of the discrete system is determined as a reference in analyzing the stability of the 

system. Stability analysis is carried out using the Jacobi matrix to calculate the eigenvalues, which are the main 

indicators of the stability of the equilibrium point [33]-[35]. Finally, simulations are carried out on the discrete 

dynamic system to observe the behavior of the model as a whole, while interpreting the simulation results to gain 

further insight into the characteristics of flying fox string vibration. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Dynamic Analysis of Discrete Model of Flying Fox String Vibration 

3.1.1. Model Reduction 

It is necessary to do a model reduction before conducting stability analysis, so that the model will become 

a first-order ordinary differential equation system. The mathematical model of flying fox string vibration 

constructed by Kusumastuti, et al. (2017) is as follows: 

 

𝑑2𝑦(𝑡)

𝑑𝑡2
= −𝛿1

𝑑𝑦(𝑡)

𝑑𝑡
−

(𝜇𝑘𝑁 + 𝑏𝜂𝑣 − 2𝐸𝐴)𝑦(𝑡)

𝑚𝑑𝐿
+

𝑚𝑏𝑔

𝑚𝑑
… (1) 

 

𝑑2𝜃(𝑡)

𝑑𝑡2
= −𝛿2

𝑑𝜃(𝑡)

𝑑𝑡
−

6𝑘

𝑚𝑑
(

𝑠𝑖𝑛 𝜃 (𝑡)

𝑐𝑜𝑠3𝜃 (𝑡)
) + 0.05 𝑠𝑖𝑛 𝑡      … (2) 

 

Equation (1) is the equation for the deflection of the flying fox string and equation (2) is the equation for 

the angle of deflection of the flying fox string. Reduction in equation (1) is done by assuming y (t)=P and dP/dt=Q. 

After the reduction, the system of ordinary differential equations from equation (1) is obtained as follows: 

 

 

                                                                                                  … (3) 

 

 

 

Next, the reduction in equation (2) is carried out by assuming 𝜃(𝑡)=𝑅 and dR/dt=S. After the reduction, 

the system of ordinary differential equations obtained from equation (2) is as follows: 

 

 

 

 

 

                                                                                                 … (4) 

 

Based on the explanation of the reduction of models (1) and (2) which are in the form of second-order 

ordinary differential equations, they have been changed into a system of first-order ordinary differential equations, 

where 𝑃 is the string deflection equation, 𝑄 is the string deflection velocity equation, 𝑅 is the string deflection 

angle equation, and 𝑆 is the flying fox string deflection angular velocity equation. 

 

3.2.  Model Discretization 

The system of equations (3) is discretized using the standard finite difference method approach for the 

values 
𝑑𝑃

𝑑𝑡
=

𝑃𝑛+1−𝑃𝑛

ℎ
 in the equation of string deflection and value 

𝑑𝑄

𝑑𝑡
=

𝑄𝑛+1−𝑄𝑛

ℎ
 on the equation of the string 

deflection velocity. Then, the system of equations (4) is discretized using the standard finite difference method 

approach for the values 
𝑑𝑅

𝑑𝑡
=

𝑅𝑛+1−𝑅𝑛

ℎ
 on the equation of string angles and values 

𝑑𝑆

𝑑𝑡
=

𝑆𝑛+1−𝑆𝑛

ℎ
 on the angular 

velocity equation of the string. Thus, the discrete dynamic system model of the flying fox string deflection is 

obtained as follows: 
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           … (5) 

                                                                                                                 

And also obtained the discrete dynamic system model of the flying fox string angle as follows: 

 

 

 

           … (6) 

            

The system of equations (5) is a discrete flying fox string vibration deflection model and the system of 

equations (6) is a discrete flying fox string vibration deflection angle model where ℎ is a positive step size. 

 

3.3. Linearization of the Model 

Linearization is carried out if there are non-linear terms in an equation before carrying out equilibrium 

analysis. The non-linear terms in the two systems of equations are found in equation (6), namely 
𝑠𝑖𝑛𝑅𝑛

𝑐𝑜𝑠3𝑅𝑛
. 

Linearization is done by expanding the nonlinear terms using a Taylor series around 𝑅𝑛 = 0 as follows: 

The Taylor series formulation is: 

 

𝑓 (𝑥) ≈  𝑓 (𝑐) +
𝑓′(𝑐)

1!
(𝑥 − 𝑐) +

𝑓′′(𝑐)

2!
 (𝑥 − 𝑐)2 +

𝑓′′′(𝑐)

3!
(𝑥 − 𝑐)3+. . . .  . . . . (7) 

 

The linearization process in this case only requires a Taylor series with a truncation at the second 

derivative. Thus we obtain: 

 

𝑆𝑛+1 = 𝑆𝑛 −  ℎ𝛿𝑠𝑆𝑛 −
6𝑘ℎ

𝑚𝑑
 𝑅𝑛 . . . (8) 

 

Thus, the nonlinear ordinary differential equation has become a linear ordinary differential equation. 

 

3.4. Equilibrium Point of the Model 

The discrete dynamic equilibrium point in the system of equations (5) is the point (𝑃∗,𝑄∗) which is 

obtained by fulfilling Eq 𝑓(𝑃∗,𝑄∗) = 𝑃∗ and 𝑔(𝑃∗,𝑄∗) = 𝑄∗. In the first case, it is assumed that the deflection and 

deflection velocity at the initial conditions are zero or 𝑃∗ = 0, because 𝑃∗ + ℎ𝑄∗ = 𝑃∗ so ℎ𝑄∗ = 0 or 𝑄∗ = 0. So that 

the equilibrium point is obtained from the system of equations (5), namely 𝐸1(𝑃∗,𝑄∗) = (0,0). This equilibrium 

point is a trivial equilibrium point. So we get the second equilibrium point from the system of equations (5), namely 

𝐸2(𝑃∗, 𝑄∗) = (
(𝑚𝑏𝑔)(𝐿)

𝜇𝑘𝑁+𝑏𝜂𝑣−2𝐸𝐴
, 0). 

 

Next, because the system of equations (5) and (6) are uncoupled, each equilibrium point is sought. The 

discrete dynamic equilibrium point in the system of equations (6) is the point (𝑅∗,𝑆∗) which is obtained by fulfilling 

Eq 𝑓(𝑅∗,𝑆∗) = 𝑅∗ and 𝑔(𝑅∗,𝑆∗) = 𝑆∗. In the first case, because in the initial conditions the angle and angular velocity 

do not change, it can be written 𝑅∗ = 0, because 𝑅∗+ℎ𝑆∗  = 𝑅∗ so ℎ𝑆∗ = 0 or S∗ = 0. So that the equilibrium point is 

obtained from the system of equations (6), namely E1 (𝑅∗,𝑆∗) = (0,0). This equilibrium point is a trivial equilibrium 

point. So we obtain the second equilibrium point from the system of equations (6), namely 𝐸2(𝑅∗, 𝑆∗) =

(
0.05 𝑠𝑖𝑛 𝑡 (𝑚𝑑)

6𝑘
, 0). 

 

3.5. Stability Analysis at Equilibrium Point 

Stage I. Analysis of the stability of the deflection equation. To determine the type of stability of the 

equilibrium point in the system of equations (5), an eigenvalue analysis of the Jacobian matrix for E_2 (P^*,Q^*) 

is carried out. Thus, the Jacobi matrix for the system of equations (5) is obtained as follows: 

 

 

 

         

 

Next, to find the eigenvalues of the Jacobian matrix at the equilibrium point at 𝐸2, we obtain: 
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        … (9) 

 

 

 

 

 

Then substitute the parameter values by Kusumastuti, et al. (2017) into 𝜆1,2, so that the eigenvalues are 

obtained. 𝜆1 = -0.005h + (0.14565h) i and 𝜆2= -0.005h + (0.14565h)i. Because 𝜆1,2 ∈ ℂ, with h always being 

positive, 𝜆1 = a + ib or 𝜆2= a – ib and 𝑟 =  √𝑎2 + 𝑏2 so 𝑟 =  √(−0.005)2 + (0.145652 = 0.14574 if |r| < 1 

then the equilibrium point 𝐸2(𝑃∗, 𝑄∗) = (
(𝑚𝑏𝑔)(𝐿)

𝜇𝑘𝑁+𝑏𝜂𝑣−2𝐸𝐴
, 0) is stable (sink). So it can be said that the deflection of 

the string and the speed of the deflection of the string show behavior that is close to the actual state. 

 

Stage II. Analysis of the stability of the equation of the angle of deflection of the string. To determine the type of 

stability of the equilibrium point in the system of equations (6), an analysis of the eigenvalues of the Jacobian 

matrix is carried out for 𝐸2 (𝑅∗,𝑆∗). Next, for the Jacobian matrix in the system of equations (6) at the equilibrium 

point (𝑅∗,𝑆∗) So the Jacobi matrix for the system of equations (6) is obtained as follows: 

 

 

 

         

 

 

Next, to find the eigenvalues of the Jacobian matrix at the equilibrium point at 𝐸2, we obtain: 

 

 
 

 

         … (10) 

 

Then substitute the parameter values by Kusumastuti, et al. (2017) into 𝜆3,4, so that the eigenvalue is 

obtained 𝜆3 = -0.005h + (0.1331480769h) i and 𝜆4= -0.005h + (0.1331480769h)i. Because 𝜆3,4 ∈ ℂ, with h 

always being positive, 𝜆3 = a + ib or 𝜆4 = a – ib and 𝑟 =  √𝑎2 + 𝑏2 so 𝑟 =

 √(−0.005)2 + (0.133114807692 = 0.1332419  jika |r| < 1 maka titik kesetimbangan 𝐸2(𝑅∗, 𝑆∗) =

(
0.05 𝑠𝑖𝑛 𝑡 (𝑚𝑑)

6𝑘
, 0) is stable (sink). So it can be said that the angle of deflection of the string and the angular velocity 

of the deflection of the string show behavior that is close to the actual state. 

 

3.6. Simulation and Interpretation 

Simulation I (Flying Fox String Vibration Deflection). Discretely, the simulation can be explained as 

follows: 
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Figure 1. Simulation of the Flying Fox String Deflection Discrete System: initial values for P (0) = 0,Q (0) = 

0, 𝛿1 = 1/100, 𝑚𝑏 = 50, 𝑎𝑛𝑑 𝑚𝑑 = 50 

 

Figure 1 shows a numerical simulation of a discrete model of deflection on a flying fox string when 𝑡 ∈ 

[0,300] with initial conditions 𝑃(0) = 0 and 𝑄(0) = 0 as a special requirement of ordinary differential equations. 

From the graph it can be seen that the simulation shows that the equilibrium point exists and is stable. This can be 

seen from the direction of the solution towards the equilibrium point. Likewise with the results of the eigenvalues 

in the form of complex negative numbers. Thus the analyzed model is stable with the parameters used. The graph 

of the results of solving the continuous model of vibration deflection of flying fox strings numerically using the 

4th order Runge-Kutta method will be presented as follows: 

 

 
Figure 2. Simulation I of the Flying Fox String Deflection Continuous System: initial values for P (0) = 0,Q (0) = 

0, 𝛿1 = 1/100, 𝑚𝑏 = 50, 𝑎𝑛𝑑 𝑚𝑑 = 50 

 

Figure 2 shows a graph of the continuous flying fox string vibration mathematical model. The graph is 

displayed with the MATLAB program at the first 5 minutes or when 𝑡 ∈ [300] in seconds. From the graph it can 

be seen that the deflection decreases over time, this is in accordance with the phenomenon in the field that the 

string has a large deflection when the object or load begins to be launched on the flying fox ride. From the discrete 

and continuous graphs it can be seen that both simulations show that the equilibrium point exists and is stable. 

This can also be seen from the differences in the graphs which are not too significant. 

 

Simulation II (Flying Fox String Vibration Deflection Angle). Discretely, the simulation can be explained 

as follows: 

 

 
Figure 3. Simulation of the Flying Fox String Deflection Discrete System: initial values for R (0) = 0,S (0) = 

0, 𝛿2 = 1/100, 𝑚𝑏 = 50, 𝑎𝑛𝑑 𝑚𝑑 = 50 
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In Figure 3, it can be seen that the simulation shows that the equilibrium point exists and is stable. This 

can be seen from the direction of the solution towards the equilibrium point. Likewise, the results of the 

eigenvalues are in the form of complex negative numbers. Thus, it is concluded that the analyzed model is stable 

with the parameters used. The graph of the results of solving the continuous model of the vibration angle of the 

flying fox string numerically using the Runge-Kutta method of order 4 will be presented as follows: 

 

 
Figure 4. Simulation I of Flying Fox String Deflection Continuous System: initial value for R (0) = 0,S (0) = 

0, 𝛿2 = 1/100, 𝑚𝑏 = 50, 𝑎𝑛𝑑 𝑚𝑑 = 50 

 

Figure 4 shows a graph of the mathematical model of the vibration deflection angle of the continuous 

flying fox string. The graph is displayed with the MATLAB program at the beginning of 5 minutes or when 𝑡 ∈ 

[300] in seconds. From the graph it can be seen that the deflection angle increases over time and then decreases 

again when the flying fox is about to finish, this is in accordance with the phenomenon in the field that the string 

has a small deflection angle when the object or load begins to be launched on the flying fox ride. From the discrete 

and continuous graphs it can be seen that both simulations show that the equilibrium point exists and is stable. 

This can also be seen from the differences in the graphs which are not too significant. 

The results of the discrete model analysis show that the flying fox rope vibration system is in a stable 

condition, as indicated by the complex eigenvalues with negative real parts. This means that any small disturbance 

to the system will dampen over time and the system will return to the equilibrium point. This finding confirms that 

the mathematical model used represents the physical dynamics of the rope well in the operational context of the 

flying fox. 

Furthermore, the model reduction and linearization process is an important step to simplify the second-

order differential system into a first-order system, which is easier to analyze numerically [36]-[38]. The use of the 

Forward Euler method for discretization also shows the efficiency in solving the model numerically and provides 

results that are in line with the simulation of the continuous model solved by the fourth-order Runge-Kutta method 

[39]-[41]. The agreement of the results between the discrete and continuous models shows the validity of the 

discrete approach used. 

Numerical simulations performed for both rope deflection and angle of deflection show that the solution 

direction is toward the equilibrium point. This phenomenon is consistent with the field conditions, where the flying 

fox rope shows large initial vibrations when the load starts to move, but then dampens gradually. Thus, this model 

can accurately represent the behavior of the actual physical system. 

The important contribution of this study lies in the integration of the discrete dynamic system approach 

with stability analysis, which is rarely applied in rope-based recreation studies such as flying fox. In addition to 

enriching the academic literature, this finding can be used as a basis for developing safer flying fox design 

guidelines, considering that system stability is a key indicator to avoid accidents due to extreme rope fluctuations 

during operation. 

This research has a significant impact on the development of mathematical models for physical systems 

involving rope dynamics, especially in flying fox rides. With a discrete approach and structured stability analysis, 

this research provides a scientific basis that can be utilized in the design of safer and more efficient systems [48]-

[50]. Practically, this model can be used by engineers or ride managers to evaluate rope behavior in various 

operational scenarios without having to rely on risky physical trials. However, this research has several limitations. 

The model used is still based on ideal parameters taken from previous research, so it has not considered external 

variables such as changes in temperature, wind, or load variations in real time. In addition, the simulation is carried 

out in two-dimensional space and has not accommodated the complexity of three-dimensional movements that 

may occur in real rope systems. These limitations provide opportunities for further research to develop more 

complex and realistic models, including integration with empirical data in the field. 
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4. CONCLUSION 

The conclusion of this study is that the discrete model of flying fox string vibration in the form of a 

second-order ordinary differential equation is reduced to produce a first-order ordinary differential equation. 

Discretization is carried out using the Euler Forward method to produce linear and non-linear dynamic systems. 

Linearization is carried out on non-linear differential equations. In each dynamic system, an equilibrium point is 

obtained, namely 𝐸1(𝑃∗,𝑄∗) = (0,0), 𝐸2(𝑃∗, 𝑄∗) = (
(𝑚𝑏𝑔)(𝐿)

𝜇𝑘𝑁+𝑏𝜂𝑣−2𝐸𝐴
, 0), 0) and 𝐸1(𝑅∗,𝑆∗) = (0,0), 𝐸2(𝑅∗, 𝑆∗) =

(
0.05 𝑠𝑖𝑛 𝑡 (𝑚𝑑)

6𝑘
, 0) so that the type of stability can be determined. Equilibrium point 𝐸2(𝑃∗,𝑄∗) and E2(𝑅∗,𝑆∗) is stable 

with complex negative eigenvalues. In the simulation and interpretation section, numerical simulations and phase 

portraits are carried out using predetermined parameters. The analysis results obtained are in accordance with the 

discrete and continuous models. This can be seen from the spiral simulation shape with a direction towards the 

equilibrium point. Further research is suggested to develop the model by considering environmental variables such 

as wind, temperature, and dynamic variation of load mass. In addition, implementation of the model in three-

dimensional simulation and integration with field experimental data can improve the accuracy and relevance of 

the analysis results. 
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