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 Purpose of the study: This study aims to solve the planetary motion model 

numerically using the fourth-order Runge-Kutta method and analyze the 

planetary motion profile through the resulting numerical solutions. 

Methodology: The process is carried out by solving the planetary motion model 

numerically using the fourth-order Runge-Kutta method, creating a program 

from the numerical solution, and simulating the program with variations in the 

parameters of the stability of the trajectory and the distance of the planet to the 

sun. The simulation results are in the form of estimates of the speed of the 

planet's motion in the x and y directions against time, and the influence of these 

parameters on the trajectory and velocity graphs are analyzed. 

Main Findings: Simulations show that the trajectory stability parameter and the 

planet's distance to the sun affect the planet's trajectory and velocity graphs. On 

the trajectory graph, the planet's distance to the sun affects the aphelion, minor 

axis, and major axis values of the orbit. The closer the planet is to the sun, the 

smaller its orbit, and vice versa. On the velocity graphs in the x and y directions, 

the best stability is obtained when the trajectory stability parameter is 2, in 

accordance with Newton's law of gravity. 

Novelty/Originality of this study: The novelty of this research lies in the 

application of the fourth-order Runge-Kutta method to solve the planetary 

motion model numerically, without requiring function derivatives. This research 

also connects the numerical results with Newton's law of gravity to understand 

the relationship between the distance of a planet to the sun and its orbital pattern, 

thus enriching the numerical approach in astrophysical analysis. 
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1. INTRODUCTION 

A scientist named Johannes Kepler discovered the laws that govern the movement of the earth around the 

sun, especially concerning changes in the distance between the earth and the sun. Kepler's laws about the earth's 

orbit around the sun can be stated as follows: first, that the path of each planet in the solar system when orbiting 

the sun forms an ellipse. Second, that the radius vector will move to form the same area for every equal time. And 
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third, that the time to orbit one period of rotation around the sun has a relationship to the semimajor axis of each 

planet which is constant in magnitude [1]-[3]. 

In modern times, Kepler's laws are used to approximate the orbits of satellites and objects orbiting the 

Sun, all of which were undiscovered at the time of Kepler's life (outer planets and asteroids). These laws are then 

applied to all small objects orbiting much larger objects, although some aspects such as atmospheric friction 

(motion in low orbits), or relativity and the presence of other objects can make the calculations inaccurate for 

various purposes [4]-[6]. 

Several studies have been conducted on the topic of planets orbiting the sunResearch examining the 

motion patterns of planets orbiting the sun. This research is more focused on creating (simulating) the motion 

patterns of planets orbiting the sun and is carried out using a simulation program with variations in the input values 

of the number of orbits and variations in the central radius between orbits [7]-[9]. research that has been done 

before also proves that Kepler's 2nd law on the path of each planet orbiting the sun is elliptical. And research 

related to the fourth-order Runge-Kutta method has also been done a lot, including research that compares the 

accuracy between the fourth-order Runge-Kutta method and the third-order Predictor-Corrector method. The 

results of the research are that the error value produced by the fourth-order Runge-Kutta method scheme is smaller 

than the third-order Predictor-Corrector scheme.. Thus, the Runge-Kutta method is more accurate than the 

Predictor-Corrector method [10]-[12].  

Therefore, this study offers a novelty in the form of integrating the fourth-order Runge-Kutta method in 

the numerical analysis of the planetary motion model around the sun, not only to solve the equations of motion, 

but also to analyze the influence of trajectory stability parameters and the distance of the planet to the sun on the 

trajectory profile and the planet's velocity in the x and y directions. Different from previous studies, this study not 

only validates Newton's law of gravity or the elliptical trajectory pattern, but also identifies the optimal parameters 

for the stability of the planet's trajectory [13]-[15]. 

Thus, this research provides significant contribution in numerical modeling of astrophysics, especially in 

the solar system. The fourth-order Runge-Kutta method used can be a reference for further studies in simulating 

the trajectory of other celestial objects, such as comets or asteroids. In addition, the analysis of trajectory stability 

parameters can be applied in complex orbital mechanics systems, for example in designing artificial satellite paths 

[16], [17]. 

This study is important to bridge the gap in the numerical analysis of planetary motion models around the 

sun. Although previous studies have discussed the trajectory pattern and validation of the law of gravity, there has 

been no numerical approach that focuses on connecting the trajectory stability parameters with the accuracy of the 

planetary motion graph. This study is also relevant to improving the accuracy of solutions in modern astrophysical 

analysis. Therefore, the author is interested in analyzing the numerical solution of planetary motion using the 

fourth-order Runge-Kutta method [18]-[20]. 

 The purpose of this study is to solve the planetary motion model numerically using the fourth-order 

Runge-Kutta method, which is known as a numerical method with a high degree of accuracy without requiring 

function derivatives. This study also aims to analyze the effect of trajectory stability parameters and planetary 

distance on the trajectory profile and the planetary motion velocity in the xx and yy directions. Through this 

approach, the study is expected to provide a deeper understanding of the planetary motion pattern in orbiting the 

sun, both in terms of orbital trajectory and the stability of its motion velocity. In addition, this study aims to provide 

simulations that are able to validate Newton's law of gravity numerically, with results that are in accordance with 

and support classical physics theory. Thus, this study not only contributes to the development of more accurate 

numerical models, but also broadens insight into the stability of planetary trajectories, which can be the basis for 

further astrophysical studies [21]-[23]. 

 

 

2. RESEARCH METHOD 

The steps to solve this thesis problem are to first study the literature on the planetary motion model [24-

[26]. Then, numerically solve the planetary motion model using the fourth-order Runge-Kutta Method. After 

getting a numerical solution, the next step is to create a program from the numerical solution that has been obtained 

[27]-[29]. Next, simulate the program by varying the parameter values. And the last step is to analyze the 

simulation results. Systematically, these steps can be seen in the following chart:  
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Chart 1. Steps to analyze simulation results 

 

a. Literature study of planetary motion models 

The planetary motion model used in this thesis is in the form of a function equation for the speed of a 

planet in orbiting the sun which is the result of Supardi's research (No Year) in his thesis. Viewed from the 

dependent variable, First order linear ordinary differential equation. So that the equation can be solved 

numerically by the fourth order Runge-Kuta Method [30]-[32]. 

b. Numerically with the fourt-order Runge-Kutta method 

 The equation used in this study is the fourth-order Runge-Kutta equation. In this process, the fourth-order 

Runge-Kutta equation is sought for its numerical solution using the fourth-order Rungekutta method and 

defining the variables 𝑘1 , 𝑘2 , 𝑘3 and 𝑘4 according to the general scheme [33]-[35]. 

c. Program Creaction 

 The software that will be used in creating this program is Matlab R2009a software. The procedure for 

making a planetary motion model analysis program is as follows: 

1) Determination of parameter values  

The determination of these parameters is taken from several literatures related to the movement of planets 

around the sun. The parameter values include the initial position 𝑥, 𝑦, the universal gravitational constant 

𝐺, the mass of the planet 𝑚, the distance of the planet to the sun 𝑟, the eccentricity value 𝑒 and the stability 

of the planet's trajectory 𝛽. 

2) Process 

The process referred to here is creating a program for the fourth-order Runge-Kutta method. 

3) Output  

The output that will be produced from this program is a graph of the planet's motion profile and a graph 

of the velocity function of the direction 𝑥 and 𝑦 against time. 

d. Program Simulation 

 After the program is complete, the next step is to conduct a simulation by varying the parameters that 

affect the motion of the planet. In this simulation, there are several parameters that will be varied, namely the 

initial position 𝑥, 𝑦, the universal gravitational constant 𝐺, the mass of the planet 𝑚, the distance of the planet 
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Numerical solution 
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to the sun 𝑟, the eccentricity value 𝑒 and the stability of the planet's trajectory 𝛽. Furthermore, the results of 

the simulation will be visualized in two dimensions [36]-[38]. 

e. Results Analysis  

 In this step, an analysis of the results obtained from the program simulation will be carried out. The 

analysis is carried out by considering the influence of parameters on the graphs produced by the program that 

have been produced in the previous step. This analysis aims to determine the profile of planetary motion [39]-

[41]. 

 

3. RESULTS AND DISCUSSION 

3.1.  Numerical Solution 

For directions 𝑥, (1) 

 

𝑉𝑥𝑖+1 =  𝑉𝑥𝑖 +
1

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)∆𝑡 …(1) 

𝑉𝑥𝑖+1 =  𝑥𝑖 − 𝑣𝑥𝑖+1∆𝑡 

With,  

𝑘𝟏 = −
𝐺𝑀𝑥

𝑟𝛽 
 

𝑘𝟐 = (−
𝐺𝑀𝑥

𝑟𝛽 − 0,5𝑘𝟏∆𝑡) 

 

𝑘𝟑 = (−
𝐺𝑀𝑥

𝑟𝛽 − 0,5𝑘𝟐∆𝑡) 

 

𝑘𝟑 = (−
𝐺𝑀𝑥

𝑟𝛽 − 0,5𝑘𝟑∆𝑡) 

As for the direction y, 

 

 

𝑉𝑥𝑖+1 =  𝑉𝑥𝑖 +
1

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)∆𝑡 …(2) 

𝑦𝑖+1 =  𝑦𝑖 − 𝑣𝑦𝑖+1∆𝑡 

 

𝑘𝟏 = −
𝐺𝑀𝑥

𝑟𝛽 
 

 

 

𝑘𝟐 = (−
𝐺𝑀𝑦

𝑟𝛽
− 0,5𝑘𝟏∆𝑡 

 

𝑘𝟑 = (−
𝐺𝑀𝑦

𝑟𝛽
− 0,5𝑘𝟐∆𝑡 

 

𝑘𝟒 = (−
𝐺𝑀𝑥

𝑟𝛽
− 𝑘𝟑∆𝑡 

From the equation (1) and (2) Next, the following planetary motion profile simulation is carried out. 

 

3.2.  Simulation and Program Analysis 

 The program used in this study is obtained from equations (1) and (2) which will produce 2 graphs, 

including the planetary motion profile graph and the velocity function graph of the direction 𝑥 and 𝑦. The procedure 

for using the planetary motion profile program is to input the parameters of the planet's distance to the sun 𝑟 and 

the eccentricity value 𝑒 which produces program results in the form of perihelion, aphelion, minor axis and major 

axis values. These values are visualized in the form of a planetary motion trajectory with the point in the middle 

interpreted as the sun. 

 For the procedure of using the program of velocity function graph in the direction of 𝑥 and 𝑦, the initial 

position parameters 𝑥, 𝑦, the universal gravitational constant 𝐺, the mass of the planet 𝑚, the distance of the planet 

to the sun 𝑟, the stability of the trajectory 𝛽 and the speed of the planet in the direction of 𝑥, 𝑦 are inputted. This 

program produces the results of the program in the form of planetary velocity values in the direction of 𝑥, 𝑦. These 

values are visualized in the form of an oscillation graph of the velocity function in the direction of 𝑥 and 𝑦. 

 In this simulation, the data that the author uses is data that is expected to answer the problems in this 

thesis, namely to determine the profile of planetary motion. The planetary data in question is data that is in the ring 
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in the Milky Way galaxy in the solar system, namely Mercury, Venus and Earth. The selection of this planetary 

data is based on the fact that this study pays more attention to how much influence the planetary trajectory stability 

parameter (𝛽) has, so this data has answered the problems in this thesis. 

 Some of the parameters that are varied are the initial position 𝑥, 𝑦, the universal gravitational constant 𝐺, 

the mass of the planet 𝑚, the distance of the planet to the sun 𝑟, the eccentricity value 𝑒 and the stability of the 

trajectory 𝛽. Some of the parameters that will be input are presented in the following table 1: 

 

Table 1. Data on planets in the rings of the solar system 

Planet  Distance of planets to the 

sun 

(r) × 109 m 

Gravitational constant 

(G) 

× 10-11 m3 /s2 . kg 

Planet Massa 

(M) 

× 1024 Kg 

 

Eccentricity value 

(e) 

Mercury 57.9 6.67 3.289 0.206 

Venus 108.2 6.67 48.737 0.007 

Earth 159.6 6.67 5.98 0.017 

Source: Halliday & Resnick[42] 

 

 The results of the program simulation with the data in table 4.1 are shown in figures 1 to 9 below:  

Figure 1. Mercury’s transit chart 

 Figure 1 explains the graph of the trajectory of the planet Mercury with the given input values including 

the distance of the planet to the sun (r) = 57.9 × 109 m and the eccentricity value = 0.206. From the program 

simulation, the perihelion (closest point to the sun) = 57.9 × 109 m, aphelion (farthest point from the sun) = 87.9438 

× 109 m, the minor axis of the planet Mercury = 71.3577 × 109 m and the major axis of the planet Mercury = 

72.9219 × 109 m 

Figure 2. Graph of the velocity function of the planet Mercury in the x direction against time with variations in 

beta (𝛽) 

 

Figure 2 shows the graph of the velocity function of the planet Mercury in the 𝑥 direction against time 

with the input value of the gravitational constant = 6.67×10-11 m3 /s2 .kg, planet mass = 3.289 × 1024 kg, distance 

from the sun to the planet = 57.9 × 109 m, with stability variations (𝛽1) = 1, stability (𝛽2) = 2, , stability (𝛽3) = 3, 

stability variation (𝛽4) = 4 and the initial velocity of Mercury v0𝑥 = 47.9 km/ s produces the value of the planet's 

velocity in the 𝑥 direction according to the stability variation (𝛽) yakni 𝑣𝑥1 = 0.301883 
𝑘𝑚

𝑠
 , 𝑣𝑥2 = 0.476522 

𝑘𝑚

𝑠
 , 

𝑣𝑥3 = -9.08041 
𝑘𝑚

𝑠
 dan 𝑣𝑥4 = 44.5513 

𝑘𝑚

𝑠
 . From the graph and the speed values produced by the simulation program 
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above, it can be interpreted that the graph of the speed function of the planet Mercury in the 𝑥 direction according 

to Newton's law of gravity is the variation value (𝛽2) = 2. 

 

Figure 3. Graph of the velocity function of the planet Mercury in the y direction against time with beta 

variations. (𝛽) 

 

 Figure 3 shows the graph of the velocity function of the planet Mercury in the 𝑦 direction against time 

with the input value of the gravitational constant.= 6.67 × 10-11 m 3 /s2 . kg , planet mass = 3.289 × 1024 kg, distance 

from the Sun to the planet = 57.9 × 109 m, with stability variations (𝛽1) = 1, stability (𝛽2) = 2, stability (𝛽3) = 3, 

stability variation (𝛽4) = 4 and the initial velocity of mercury 𝑣0𝑦 = 47.9 km/s produces the value of the planet's 

velocity in the 𝑦 direction according to the stability variation (𝛽) yakni 𝑣𝑦1 = 0.301883 
𝑘𝑚

𝑠
, 𝑣𝑦2 = 0.476522 

𝑘𝑚

𝑠
, 𝑣𝑦3 

= -9.08041 
𝑘𝑚

𝑠
dan 𝑣𝑦4 = 44.5513 

𝑘𝑚

𝑠
. From the graph and speed values produced by the simulation program above, 

it can be interpreted that the graph of the speed function of the planet Mercury in the 𝑦 direction is in accordance 

with Newton's law of gravitasi adalah nilai variasi (𝛽2) = 2. 

Figure 4. Graph of the path of the planet Venus 

 

 Figure 4 explains the graph of the path of the planet Venus with the given input values including the 

distance of the planet to the sun (r) = 108.2 × 109 m and the eccentricity value = 0.007. From the program simulation 

it was obtained perihelion (closest point to the sun) = 108.2 × 109 m, aphelion (furthest point from the sun) = 

109.725 × 109 m, planetary minor axis Venus = 108.954 × 109 m and the major axis of the planet Venus = 108.963 

× 109 m. 



          ISSN: 3021-7857 

Intv. Ind. J. of. Math. Ed,Vol. 2, No. 1, June 2024:  78 - 89 

84 

Figure 5. Graph of the velocity function of the planet Venus in the x direction against time with beta variations. 

(𝛽) 

 

Figure 5 explains the graph of the velocity function of the planet Venus in the 𝑥 direction against time 

with the input value of the gravitational constant = 6.67×10-11 m3 /s2 .kg, planet mass = 48.737 × 1024 kg, distance 

from the sun to the planet = 108,2 × 109 m, with stability variations (𝛽1) = 1,5, stability (𝛽2) = 2, s stability (𝛽3) = 

3, stability variation (𝛽4) = 4 and initial velocity 𝑣0𝑥 = 35 km/s produces the value of the planet's velocity in the 

direction 𝑥 according to with stability variations (𝛽) yakni 𝑣𝑥1 = 0.106106 
𝑘𝑚

𝑠
, 𝑣𝑥2 = 0.18442 

𝑘𝑚

𝑠
 , 𝑣𝑥3 = 4.4795 

𝑘𝑚

𝑠
 

dan 𝑣𝑥4 = 32.0406 
𝑘𝑚

𝑠
. From the graph and the speed values produced by the simulation program above, it can be 

interpreted that the graph of the speed function of the planet Venus in the 𝑥 direction according to Newton's law 

of gravity is the value of the stability variation (𝛽1) = 2. 

Figure 6. Graph of the velocity function of the planet Venus in the y direction against time with variations 

in beta. (𝛽) 

 

 Figure 6 explains the graph of the velocity function of the planet Venus in the 𝑦 direction against time 

with the input value of the gravitational constant = 6.67×10-11 m3 /s2 . kg, mass of the planet = 48.737 × 1024 kg, 

distance from the sun to the planet = 108,2 × 109 m, with stability variations (𝛽1) = 1,5, stability (𝛽2) = 2, stability 

(𝛽3) = 3, stability variation (𝛽4) = 4 and initial velocity 𝑣0𝑦 = 35 km/s produces the value of the planet's velocity 

in the 𝑦 direction according to the stability variation (𝛽) namely 𝑣𝑦1 = 0.106106 
𝑘𝑚

𝑠
 , 𝑣𝑦2 = 0.18442 

𝑘𝑚

𝑠
 , 𝑣𝑦3 = 

4.4795 
𝑘𝑚

𝑠
 and 𝑣𝑦4 = 32.0406 

𝑘𝑚

𝑠
 . From the graph and the speed values produced by the simulation program above, 

it can be interpreted that the graph of the speed function of the planet Venus in the 𝑦 direction according to 

Newton's law of gravity is the value of the stability variation (𝛽1) = 2. 

 

Figure 7. Graph of the Earth's orbit 

 

Figure 7 explains the graph of the Earth's trajectory with the given input values including the distance of 

the planet to the sun (r) = 149.6 × 109 m and eccentricity value = 0.017. From the program simulation, the 

perihelion (closest point to the sun) was obtained. = 149.6 × 109 m, aphelion (furthest point from the sun) = 

154.774 × 109 m, Earth's minor axis = 152.165 × 109 m and the major axis of the planet Earth = 152.187 × 109 m. 

 



Intv. Ind. J. of. Math. Ed ISSN: 3021-7857  

Numerical Solution Analysis of Planetary Motion Models Using the Runge-Kutta Method …(Ines Buissa Baluta) 

85 

 
Figure 8. Graph of the Earth's velocity function in the x direction against time with beta variations (𝛽) 

 

Figure 8 explains the graph of the Earth's velocity function in the 𝑥 direction against time with the input 

value of the gravitational constant = 6.67×10-11 m3 /s2 .kg, planet mass = 5.98 × 1024 kg, distance from the sun to 

the planet = 149.6 × 109 m, with stability variations (𝛽1) = 1, stability (𝛽2) = 2, stability (𝛽3) = 3, stability variation 

(𝛽4) = 4 and initial velocity 𝑣0𝑥 = 29.8 km/s produce the value of the planet's velocity direction 𝑥 according to beta 

variation (𝛽) namely 𝑣𝑥1 = 0.19571 
𝑘𝑚

𝑠
 , 𝑣𝑥2 = 1.31387 

𝑘𝑚

𝑠
, 𝑣𝑥3 = 13.41 

𝑘𝑚

𝑠
dan 𝑣𝑥4 = 29.7132 

𝑘𝑚

𝑠
. From the graph 

and the speed values produced by the simulation program above, it can be interpreted that the graph of the speed 

function of planet Earth in the 𝑥 direction according to Newton's law of gravity is the value of the stability variation 

(𝛽1) = 2.  

 

Figure 9. Graph of the Earth's velocity function in the y direction against time with variations in beta (𝛽) 

 

Figure 9 explains the graph of the Earth's velocity function in the 𝑦 direction against time with the input 

value of the gravitational constant = 6.67×10-11 m3 /s2 .kg, planet mass = 5.98 × 1024 kg, distance from the sun to 

the planet = 149.6 × 109 m, with stability variations (𝛽1) = 1, stability (𝛽2) = 2, stability (𝛽3) = 3, stability variation 

(𝛽4) = 4 and initial velocity 𝑣0𝑦 = 29.8 km/s produces the value of the planet's velocity in the 𝑦 direction according 

to the variation of beta (𝛽) namely 𝑣𝑦1 = 0.19571 
𝑘𝑚

𝑠
, 𝑣𝑦2 = 1.31387 

𝑘𝑚

𝑠
, 𝑣𝑦3 = 13.41 

𝑘𝑚

𝑠
and 𝑣𝑦4 = 29.7132 

𝑘𝑚

𝑠
. From 

the graph and the speed values produced by the simulation program above, it can be interpreted that the graph of 

the speed function of planet Earth in the 𝑦 direction according to Newton's law of gravity is the value of the stability 

variation (𝛽1) = 2. 

 

3.3. Program Simulation Results 

 From the program simulation in Figures 1 to 9, the values related to the planetary motion profile and the 

value of the planetary velocity function in the 𝑥 and 𝑦 directions against time are obtained. In the planetary motion 

profile, the values obtained are as follows. 

 

Table 2. Simulation results of the planetary motion profile program 

Planet  Input  Output  

r  

× 109 

m 

e p𝑒𝑟𝑖ℎ𝑒𝑙𝑖𝑜𝑛 × 109 

m 

A𝑝ℎ𝑒𝑙𝑖𝑜𝑛 × 109 

m 

S𝑢𝑚𝑏𝑢 𝑚𝑖𝑛𝑜𝑟 × 

109 m 

S𝑢𝑚𝑏𝑢 𝑚𝑎𝑦𝑜𝑟 × 

109 m 

Mercury 57.9 0.206 57.9 87.9438 71.3577 72.9219 

Venus 108.2 0.007 108.2 109.725 108.954 108.963 

Earth 149.6 0.017 149.6 154.774 152.165 152.165 
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 Table 2 explains that the further the distance of the planet from the sun (𝑟), the further the aphelion point. 

This means that the closer the distance between the planet and the sun, the closer the orbit/path of the planet in 

circling the sun. Likewise, the further the distance between a planet and the sun, the further the orbit/path of the 

planet in circling the sun. Meanwhile, in the planetary trajectory graph, the values obtained are as follows. 

 

Table 3. Simulation results of the planetary velocity function program 

Planet  Input  Output 

G M r 𝑣0x 𝑣0y 𝛽 𝑣x 𝑣y 

Mercury 

 
6.67 3.289 57.9 47.9 47.9 

1 0.301883 0.301883 

2 0.476522 0.301883 

3 -9.08041 0.301883 

4 44.5513 0.301883 

Venus 

 
6.67 48.737 108.2 35 35 

1.5 0.106106 0.106106 

2 0.18442 0.18442 

3 4.4795 4.4795 

4 32.0406 32.0406 

Earth 

6.67 5.98 149.6 29.8 29.8 

1 0.19571 0.19571 

2 1.31387 1.31387 

3 18.41 18.41 

4 29.7132 29.7132 

  

Table 3 shows that when beta 𝛽 is equal to 1 and 1.5 the graph looks tight and unstable at the upper or 

lower limits. This explains that the planet orbits the sun too fast and is unstable in its path. While when 𝛽 is equal 

to 3 and 4 the graph looks loose. This explains that the planet takes longer to orbit the sun than when 𝛽 is equal to 

2. 

 When 𝛽 is equal to 2, then the planet orbits in its path in the most stable state compared to when 𝛽 is 

equal to 1; 1.5; 3 or when 𝛽 is equal to 4. This is in accordance with Newton's law of gravity which states that 

every particle of matter in the universe pulls on other particles with a force that is directly proportional to the 

product of the masses of the other particles and inversely proportional to the square of the distance separating 

them. Thus, in this study, Newton's law of gravity is proven to be true. 

 Previous research that has been conducted that has given rise to a gap with this research, shows 

fundamental differences in the focus of the methodology and approach used. This research uses the fourth-order 

Runge-Kutta method to solve the planetary motion model numerically. The main focus of this research is the 

simulation of the planetary orbit and the analysis of the effects of the parameters of the stability of the trajectory 

and the distance of the planet to the sun on the profile of the trajectory and the speed of the planet. On the other 

hand, previous research emphasizes the qualitative data analysis approach, including the method of collecting, 

compiling, and analyzing data systematically. This qualitative research has a broad scope, but is not directly related 

to astrophysical phenomena or numerical simulations[42]-[44].  

 The results and findings of both studies also show significant differences. Numerical research produces 

a graph of the planet's orbital trajectory and speed of motion that is varied based on the parameters of trajectory 

stability and distance to the sun. These findings support Newton's law of gravity and provide a clear visualization 

of the planet's orbital pattern. In contrast, qualitative research focuses on the process of processing data to find 

meaningful patterns and relationships, providing systematic methodological guidance, but without data-based 

visualization or simulation results[45]-[47]. 

 Overall, the implementation gap between the two studies is clear. Numerical research is heavily focused 

on astrophysical applications, particularly planetary orbits, while qualitative research is methodological and 

broader in scope, but has no direct connection to numerical applications in the exact domain. This difference 

emphasizes that numerical research is more in-depth and specific to astrophysics, while qualitative research 

provides general guidance that can be applied to a variety of research fields. 

 This study offers a new approach by applying the fourth-order Runge-Kutta method to solve the planetary 

motion model numerically without requiring function derivatives. This study also successfully connects the 

numerical results with Newton's law of gravity, providing a deep understanding of the effects of the trajectory 

stability parameter (β) and the planet's distance from the sun on the orbital profile and planetary velocity. Not only 

does this study validate Newton's law of gravity, it also identifies the optimal value of the trajectory stability 

parameter (β = 2), which provides the most stable orbital trajectory[48]-[50]. 

 This study has several limitations that need to be considered for future development. First, the analysis 

conducted only focuses on the parameters of trajectory stability (β) and the distance of the planet to the sun, without 

considering the influence of external disturbances such as gravity from other planets, interactions between celestial 

bodies, or relativity effects. This can limit the accuracy of the model in representing real conditions, especially in 
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a complex solar system. Second, the data used in this study is limited to the planets in the inner solar system, 

namely Mercury, Venus, and Earth. Therefore, the results of the study may be less representative for analyzing the 

trajectories of other celestial objects, such as planets in the outer solar system, asteroids, or comets, which have 

more complex characteristics and dynamics. 

 Further research is recommended to expand the model parameters by including variables such as changes 

in solar mass and gravitational effects from other planets to improve accuracy and representation of real conditions. 

In addition, the model can be tested on other celestial objects such as asteroids, comets, or satellites to understand 

trajectories under more complex conditions. Integration with artificial intelligence (AI) is also recommended to 

automate the optimization of trajectory stability parameters, resulting in more efficient and accurate solutions. The 

use of multiplatform platforms such as Python or C++ is expected to overcome the limitations of MATLAB, 

allowing simulations on a larger scale and in a variety of environments. This approach will strengthen the 

generalization of the model and expand its applications in modern astrophysics. 

 

 

4. CONCLUSION 

  Based on the research results, several important conclusions were obtained regarding the planetary motion 

model and the influence of parameters on the stability of the planet's velocity in orbiting the sun. First, the solution 

of the planetary motion model in the form of a velocity function equation can be done using the fourth-order 

Runge-Kutta method. This method is a one-step method that provides a high level of accuracy without requiring 

function derivatives, so that the results obtained can be used as a basis for analyzing the influence of certain 

parameters, especially the parameter 𝛽. Second, the parameter 𝛽 is proven to be the most influential factor on the 

planet's velocity stability graph. The appropriate and stable value of the parameter 𝛽 for the planetary motion 

model is 2, consistent with Newton's law of gravity. Third, the distance between the planet and the sun affects the 

aphelion point and the planet's orbit. The closer the planet is to the sun, the smaller its orbital path, while the further 

the distance, the larger its orbital path. This shows a close relationship between the distance of the planet from the 

sun and its stability and trajectory pattern. 

 The results of this study have significant implications in various fields. In astrophysical modeling, this 

study can be the basis for the development of simulations of the trajectories of other celestial objects, such as 

asteroids or comets, with a high degree of accuracy. These findings are also useful in the design of orbital systems, 

where simulation results related to trajectory stability parameters can be applied to design artificial satellite paths, 

ensuring orbital stability in complex orbital mechanics systems. In addition, this study provides important 

contributions to education and research, especially as teaching materials and references for further studies in the 

fields of astrophysics and numerical modeling. This is expected to improve students' and researchers' 

understanding of planetary orbit phenomena and broaden their horizons in the application of modern astrophysics 

concepts. 
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